"P=1~\\text{N};~L=1\\text{m};~x_0=0.4~\\text{m};\\\\\nP_1=P_2=2~\\text{N};~x_1=0.15~\\text{m};~x_2~-~? \\\\\nP_1(x_0-x_1) + P_l(x_0-x_l) = P_2(x_2-x_0) + P_r(x_r-x_0); \\\\\nx_l=\\frac{x_0}{2};~x_r=x_0+\\frac{L-x_0}{2};~P_l=P\\frac{x_0}{L};~P_r=P\\frac{L-x_0}{L}; \\\\\nx_2 = x_0 + \\frac{1}{P_2}(P_1(x_0-x_1)+P\\frac{x_0}{L}\\frac{x_0}{2}-P\\frac{L-x_0}{L}\\frac{L-x_0}{2}) = x_0 + \\frac{1}{2P_2L}(2P_1L(x_0-x_1)+2PLx_0-PL^2) = 0.4~\\text{m}~+~\\frac{1}{2*2~\\text{N}*1~\\text{m}}(2*2~\\text{N}*1~\\text{m}*(0.4~\\text{m}-0.15~\\text{m})~+~1~\\text{N}*1~\\text{m}*(2*0.4~\\text{m}-1~\\text{m})) = 0.60~\\text{m}."
Comments
Leave a comment