Question #84838
Two plates of size 100 mm by 50 mm are separated with a 1 mm thick fluid in between. The top plate is moving to the right with a constant velocity of 10 m/s in response to a force of 3 N. The bottom plate is stationary. Determine the viscosity of the fluid by assuming a linear velocity distribution.
1
Expert's answer
2019-02-06T12:51:36-0500

With linear velocity distribution a shear stress in a fluid equals

τ=FA=Fab.\tau=\frac{F}{A}=\frac{F}{ab}.

For all Newtonian fluids the shear stress depends on a coefficient of viscosity

μ\mu

, velocity of a flow

vv

, and the height

hh

above the fixed surface (plate):

τ=μvh.\tau=\mu \frac{v}{h}.

Find the viscosity from these two expressions:

Fab=μvh,\frac{F}{ab}=\mu\frac{v}{h},μ=Fhabv=30.0010.10.0510=0.06 Pas.\mu=\frac{Fh}{abv}=\frac{3\cdot 0.001}{0.1\cdot 0.05\cdot 10}=0.06\text{ Pa}\cdot\text{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS