λ=m/L\lambda=m/Lλ=m/L
Equation of motion
λy(t)g−λ(L−y(t))g−λg=Lλd2y(t)dt2→\lambda y(t)g-\lambda(L-y(t))g-\lambda g=L\lambda\frac{d^2y(t)}{dt^2}\toλy(t)g−λ(L−y(t))g−λg=Lλdt2d2y(t)→
y(t)=L+12+Ae2g/L⋅ty(t)=\frac{L+1}{2}+Ae^{\sqrt{2g/L}\cdot t}y(t)=2L+1+Ae2g/L⋅t
L=8 mL=8\ mL=8 m
y(0)=6 my(0)=6\ my(0)=6 m . So, we have A=1.5A=1.5A=1.5
y(t)=L+12+1.5e2g/L⋅t=4.5+1.5e1.581ty(t)=\frac{L+1}{2}+1.5e^{\sqrt{2g/L}\cdot t}=4.5+1.5e^{1.581t}y(t)=2L+1+1.5e2g/L⋅t=4.5+1.5e1.581t
For y(t)=8 m→t≈0.54 (s)y(t)=8\ m\to t\approx0.54\ (s)y(t)=8 m→t≈0.54 (s) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments