Answer to Question #331229 in Mechanics | Relativity for Sindy

Question #331229

momentum is conserved in a collision of two objects as measured by an observer on a uniformly moving train. show that momentum is also conserved for a ground observed



1
Expert's answer
2022-04-21T13:02:14-0400

Momentum conserving in the train reference system:

v1+v2=u1+u2,   (1)\overrightarrow{v_1}+\overrightarrow{v_2}=\overrightarrow{u_1}+\overrightarrow{u_2},~~~(1)

where v1, v2\overrightarrow{v_1},~\overrightarrow{v_2} - velocities of the first and second object before collision, u1, u2\overrightarrow{u_1},~\overrightarrow{u_2} - after collision.


In the ground reference system each of those velocities will be increased with velocity of train vv:

v1=v1+vv1=v1v,v2=v2+vv2=v2v,u1=u1+vu1=u1v,u2=u2+vu2=u2v\overrightarrow{v_1'}=\overrightarrow{v_1}+\overrightarrow{v}\Rarr \overrightarrow{v_1}=\overrightarrow{v_1'}-\overrightarrow{v},\\ \overrightarrow{v_2'}=\overrightarrow{v_2}+\overrightarrow{v}\Rarr \overrightarrow{v_2}=\overrightarrow{v_2'}-\overrightarrow{v},\\ \overrightarrow{u_1'}=\overrightarrow{u_1}+\overrightarrow{v}\Rarr \overrightarrow{u_1}=\overrightarrow{u_1'}-\overrightarrow{v},\\ \overrightarrow{u_2'}=\overrightarrow{u_2}+\overrightarrow{v}\Rarr \overrightarrow{u_2}=\overrightarrow{u_2'}-\overrightarrow{v}

Let's insert this values into the equation (1):

(v1v)+(v2v)=(u1v)+(u2v)v1+v2=u1+u2,(\overrightarrow{v_1'}-\overrightarrow{v})+(\overrightarrow{v_2'}-\overrightarrow{v})=(\overrightarrow{u_1'}-\overrightarrow{v})+(\overrightarrow{u_2'}-\overrightarrow{v})\Rarr\\ \Rarr\overrightarrow{v_1'}+\overrightarrow{v_2'}=\overrightarrow{u_1'}+\overrightarrow{u_2'},

so, we can see that momentum is also conserved in the ground reference system.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment