L e t v 0 = 25 m s − 1 , α 0 = 35 ° , h = 20 m , g = 9.8 m s − 2 Let\space v_0=25\space ms^{-1},\space\alpha_0=35\degree,\\
h=20\space m,\space g=9.8\space ms^{-2} L e t v 0 = 25 m s − 1 , α 0 = 35° , h = 20 m , g = 9.8 m s − 2
a) Let's write an equation for vertical direction:
y = v 0 sin ( α 0 ) t − g t 2 2 y = − h ⇒ g t 2 2 − v 0 sin ( α 0 ) t − h = 0 t = v 0 sin α 0 ± ( v 0 sin α 0 ) 2 + 2 g h g y=v_0\sin(\alpha_0)t-\frac{gt^2}{2}\\
y=-h\Rarr\frac{gt^2}{2}-v_0\sin(\alpha_0)t-h=0\\
t=\frac{v_0\sin\alpha_0\pm\sqrt{(v_0\sin\alpha_0)^2 + 2gh}}{g} y = v 0 sin ( α 0 ) t − 2 g t 2 y = − h ⇒ 2 g t 2 − v 0 sin ( α 0 ) t − h = 0 t = g v 0 s i n α 0 ± ( v 0 s i n α 0 ) 2 + 2 g h
Since time should be ≥ 0 \geq0 ≥ 0 , we select '+' sign:
t = v 0 sin α 0 + ( v 0 sin α 0 ) 2 + 2 g h g t=\frac{v_0\sin\alpha_0+\sqrt{(v_0\sin\alpha_0)^2 + 2gh}}{g} t = g v 0 s i n α 0 + ( v 0 s i n α 0 ) 2 + 2 g h
t = 25 ⋅ sin 35 ° + ( 25 ⋅ sin 35 ° ) 2 + 2 ⋅ 9.8 ⋅ 20 9.8 s ≈ 4.0 s t=\frac{25\cdot\sin{35\degree}+\sqrt{(25\cdot\sin{35\degree})^2 + 2\cdot 9.8\cdot 20}}{9.8}\space s\approx 4.0\space s t = 9.8 25 ⋅ s i n 35° + ( 25 ⋅ s i n 35° ) 2 + 2 ⋅ 9.8 ⋅ 20 s ≈ 4.0 s
b) We can find velocity magnitude at impact from the law of conservation of energy:
m v 0 2 2 = m v 2 2 − m g h ⇒ v = v 0 2 + 2 g h v = 2 5 2 + 2 ⋅ 9.8 ⋅ 20 m s − 1 ≈ 32 m s − 1 \frac{mv_0^2}{2}=\frac{mv^2}{2}-mgh\Rarr v=\sqrt{v_0^2+2gh}\\
v=\sqrt{25^2+2\cdot 9.8\cdot 20}\space ms^{-1}\approx 32\space ms^{-1} 2 m v 0 2 = 2 m v 2 − m g h ⇒ v = v 0 2 + 2 g h v = 2 5 2 + 2 ⋅ 9.8 ⋅ 20 m s − 1 ≈ 32 m s − 1
The angle between velocity and horizontal we can find using fact that horizontal component of speed remains constant:
v x = v 0 cos α 0 = c o n s t cos α = v x v = v 0 cos α 0 v 0 2 + 2 g h ⇒ α = ± arccos v 0 cos α 0 v 0 2 + 2 g h v_x=v_0\cos\alpha_0=const\\
\cos\alpha=\frac{v_x}{v}=\frac{v_0\cos\alpha_0}{\sqrt{v_0^2+2gh}}\Rarr \alpha=\pm\arccos{\frac{v_0\cos\alpha_0}{\sqrt{v_0^2+2gh}}} v x = v 0 cos α 0 = co n s t cos α = v v x = v 0 2 + 2 g h v 0 c o s α 0 ⇒ α = ± arccos v 0 2 + 2 g h v 0 c o s α 0
Since velocity is directed downward, we select '-' sign:
α = − arccos 25 ⋅ cos 35 ° 32 ≈ − 50 ° \alpha=-\arccos\frac{25\cdot \cos{35\degree}}{32}\approx -50\degree α = − arccos 32 25 ⋅ c o s 35° ≈ − 50°
Answers:
a) t ≈ 4.0 s t\approx 4.0\space s t ≈ 4.0 s
b) v ≈ 32 m s − 1 , α ≈ − 50 ° v\approx 32\space ms^{-1},\space \alpha\approx -50\degree v ≈ 32 m s − 1 , α ≈ − 50°
Comments