The relativistic kinetic energy of a proton is
K = 1 ( 1 β ( v c ) 2 ) m c 2 K=\frac{1}{\sqrt(1-(\frac{v}{c})^2)} mc^2 K = ( β 1 β ( c v β ) 2 ) 1 β m c 2
= 1 ( 1 β ( 2.90 Γ 1 0 8 3 Γ 1 0 8 ) 2 ) ( 938 M e V ) = 3663.5 M e V =\frac{1}{\sqrt(1-(\frac{2.90 \times10^8}{3 \times10^8})^2)} (938 MeV)
=3663.5 MeV = ( β 1 β ( 3 Γ 1 0 8 2.90 Γ 1 0 8 β ) 2 ) 1 β ( 938 M e V ) = 3663.5 M e V
The relativistic momentum of a proton is
p = 1 ( 1 β ( v c ) 2 ) m v p=\frac{1}{\sqrt(1-(\frac{v}{c})^2)} mv p = ( β 1 β ( c v β ) 2 ) 1 β m v
= 1 ( 1 β ( 2.90 Γ 1 0 8 3 Γ 1 0 8 ) 2 ) ( 938 M e V / c 2 ) ( 2.90 Γ 1 0 8 3 Γ 1 0 8 ) c =\frac{1}{\sqrt(1-(\frac{2.90 \times10^8}{3 \times10^8})^2)} (938 MeV/c^2)(\frac{2.90 \times10^8}{3 \times10^8})c = ( β 1 β ( 3 Γ 1 0 8 2.90 Γ 1 0 8 β ) 2 ) 1 β ( 938 M e V / c 2 ) ( 3 Γ 1 0 8 2.90 Γ 1 0 8 β ) c
= 35141.5 M e V / c =35141.5 MeV/c = 35141.5 M e V / c
Comments