1. Calculate the kinetic energy and momentum of a proton traveling 2.90 π₯ 108 π/π .
The relativistic kinetic energy of a proton is
K=1(1β(vc)2)mc2K=\frac{1}{\sqrt(1-(\frac{v}{c})^2)} mc^2K=(β1β(cvβ)2)1βmc2
=1(1β(2.90Γ1083Γ108)2)(938MeV)=3663.5MeV=\frac{1}{\sqrt(1-(\frac{2.90 \times10^8}{3 \times10^8})^2)} (938 MeV) =3663.5 MeV=(β1β(3Γ1082.90Γ108β)2)1β(938MeV)=3663.5MeV
The relativistic momentum of a proton is
p=1(1β(vc)2)mvp=\frac{1}{\sqrt(1-(\frac{v}{c})^2)} mvp=(β1β(cvβ)2)1βmv
=1(1β(2.90Γ1083Γ108)2)(938MeV/c2)(2.90Γ1083Γ108)c=\frac{1}{\sqrt(1-(\frac{2.90 \times10^8}{3 \times10^8})^2)} (938 MeV/c^2)(\frac{2.90 \times10^8}{3 \times10^8})c=(β1β(3Γ1082.90Γ108β)2)1β(938MeV/c2)(3Γ1082.90Γ108β)c
=35141.5MeV/c=35141.5 MeV/c=35141.5MeV/c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments