Solution.
S = 300 m ; S=300m; S = 300 m ;
v 0 A = 0 ; v_{0A}=0; v 0 A = 0 ;
a A = 1.6 m / s 2 ; a_A=1.6 m/s^2; a A = 1.6 m / s 2 ;
v 0 B = 0 ; v_{0B}=0; v 0 B = 0 ;
a B = 2.0 m / s 2 ; a_B=2.0 m/s^2; a B = 2.0 m / s 2 ;
S A = S B = 30 m ; S_A=S_B=30m; S A = S B = 30 m ;
S a = v A 2 2 a A ⟹ v A = 2 a A S A ; S_a=\dfrac{v_A^2}{2a_A}\implies v_A=\sqrt{2a_AS_A}; S a = 2 a A v A 2 ⟹ v A = 2 a A S A ;
v A = 2 ⋅ 1.6 ⋅ 30 = 9.8 m / s ; v_A=\sqrt{2\sdot1.6\sdot30}=9.8 m/s; v A = 2 ⋅ 1.6 ⋅ 30 = 9.8 m / s ;
a A = v A − v 0 A t A ⟹ t A = v A − v 0 A a A ; a_A=\dfrac{{v_A-v_{0A}}}{t_A}\implies t_A=\dfrac{v_A-v_{0A}}{a_A}; a A = t A v A − v 0 A ⟹ t A = a A v A − v 0 A ;
t A = 9.8 1.6 = 6.1 s ; t_A=\dfrac{9.8}{1.6}=6.1s; t A = 1.6 9.8 = 6.1 s ;
S B = v B 2 2 a B ⟹ v B = 2 a B S B ; S_B=\dfrac{v_B^2}{2a_B}\implies v_B=\sqrt{2a_BS_B}; S B = 2 a B v B 2 ⟹ v B = 2 a B S B ;
v B = 2 ⋅ 2.0 ⋅ 30 = 11.0 m / s ; v_B=\sqrt{2\sdot2.0\sdot30}=11.0 m/s; v B = 2 ⋅ 2.0 ⋅ 30 = 11.0 m / s ;
a B = v B − v 0 B t B ⟹ t B = v B − v 0 B a B ; a_B=\dfrac{{v_B-v_{0B}}}{t_B}\implies t_B=\dfrac{v_B-v_{0B}}{a_B}; a B = t B v B − v 0 B ⟹ t B = a B v B − v 0 B ;
t B = 11.0 2.0 = 5.5 s ; t_B=\dfrac{11.0}{2.0}=5.5s; t B = 2.0 11.0 = 5.5 s ;
τ A = 270 9.8 = 27.6 s ; \tau_A=\dfrac{270}{9.8}=27.6 s; τ A = 9.8 270 = 27.6 s ;
τ B = 270 11.0 = 24.5 s ; \tau_B=\dfrac{270}{11.0}=24.5 s; τ B = 11.0 270 = 24.5 s ;
Δ t = ( t A + τ A ) − ( t B + τ B ) ; \Delta t=(t_A+\tau_A)-(t_B+\tau_B); Δ t = ( t A + τ A ) − ( t B + τ B ) ;
Δ t = ( 6.1 + 27.6 ) − ( 5.5 + 24.5 ) = 3.7 s ; \Delta t=(6.1+27.6)-(5.5+24.5)=3.7s; Δ t = ( 6.1 + 27.6 ) − ( 5.5 + 24.5 ) = 3.7 s ;
Answer: Δ t = 3.7 s . \Delta t=3.7s. Δ t = 3.7 s .
Comments