Question #308814

With its engine cut off, a small airplane glides downward at an angle of 15° below the 

horizontal at a speed of 240 km/h. (a) What are the horizontal and the vertical 

components of its velocity? (b) If the airplane is initially at a height of 2000 m above the 

ground, how long does it take to crash into the ground?  

Note: For (a), you may use m/s or km/h as long as you indicate, and you are consistent 

with the unit that you use. For (b) you may use seconds(s) or minute(m), just indicate the 

unit used.


1
Expert's answer
2022-03-10T10:17:43-0500

Explanations & Calculations


a)

  • Horizontal component of the velocity is vcosθ=240×cos15=231.8kmh1\small v\cos \theta=240\times\cos 15=231.8\,kmh^{-1}
  • Vertical component is just at the beginning is vsinθ=240sin15=62.1kmh1\small v\sin\theta=240\sin 15 = 62.1\,kmh^{-1}


b)

  • Since the plane moves in a parabolic trajectory as a projectile it falls under gravitational acceleration.
  • Apply s=ut+1/2at2\small s=ut+1/2at^2 for its downward motion.

s=vsinθ×t+12×(+g)×t22000m=(62.1×1000m3600s)t+12×9.8ms2×t24.9t2+17.25t2000=0t=18.5or22.0(impossible)t=18.5s\qquad\qquad \begin{aligned} \downarrow\\ \small s &=\small v\sin\theta\times t+\frac{1}{2}\times(+g)\times t^2\\ \small 2000\,m&=\small \Big(62.1\times\frac{1000m}{3600\,s}\Big)t+\frac{1}{2}\times9.8\,ms^{-2}\times t^2\\ \small 4.9t^2+17.25t-2000&=\small 0\\ \small t&=\small 18.5\quad or \quad -22.0(impossible)\\ \therefore\quad \small t&=\small 18.5\,s \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS