A fluid flow is given by : V = x * y ^ 2 * i - 2y * z ^ 2 * j - (z * y ^ 2 - (2z ^ 3)/3) * k. Prove that it is a case of possible steady incompressible fluid flow Calculate the velocity and acceleration at the point [1, 2, 3] .
v⃗=xy2i⃗−2yz2j⃗−(zy2−2z33)k⃗,\vec v=xy^2\vec i-2yz^2\vec j-(zy^2-\frac{2z^3}3)\vec k,v=xy2i−2yz2j−(zy2−32z3)k,
v⃗(1,2,3)=4i⃗−36j⃗+6k⃗,\vec v(1,2,3)=4\vec i-36\vec j+6\vec k,v(1,2,3)=4i−36j+6k,
a⃗=y2i⃗−2z2j⃗−(y2−2z2)k⃗,\vec a=y^2\vec i-2z^2\vec j-(y^2-2z^2)\vec k,a=y2i−2z2j−(y2−2z2)k,
a⃗(1,2,3)=4i⃗−18j⃗+14k⃗.\vec a(1,2,3)=4\vec i-18\vec j+14\vec k.a(1,2,3)=4i−18j+14k.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments