Question #296366

A train of mass 200kN has a frictional resistance of 5N per kN. The speed of the


train, at the top of an inclined of 1 in 80 is 45 km/h. Find the speed of the train after


running down the incline for 1km.

1
Expert's answer
2022-02-10T16:15:09-0500

Given:

W=200kNW=200\:\rm kN

Ff=1000NF_f=1000\:\rm N

sinθ=1/80\sin\theta=1/80

l=1000ml=1000\:\rm m


The net force

F=WsinθFf=2000001/801000=1500NF=W\sin\theta-F_f\\ =200\:000*1/80-1000=1500\:\rm N

The acceleration of a train

a=Fm=FgW=15009.8200000=0.0735m/s2a=\frac{F}{m}=\frac{Fg}{W}=\frac{1500*9.8}{200\: 000}=0.0735\:\rm m/s^2

The final velocity

v=2la=210000.0735=12.1m/sv=\sqrt{2la}=\sqrt{2*1000*0.0735}=12.1\:\rm m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS