Answer to Question #292323 in Mechanics | Relativity for Ashter

Question #292323

a satellite orbits earth at an altitude 356 kilometers above the planets surface. Compute for its (a) radius (b) speed (c) orbital period. (mE=5.97x10^24 kg)


1
Expert's answer
2022-02-02T14:42:07-0500

Radius

R=Re+hR=R_e+h


R=6400000+356000=6756000mR=6400000+356000=6756000m

We know that

In circular motion

GmMR=mv2R\frac{GmM}{R}=\frac{mv^2}{R}

V=GMRV=\sqrt{\frac{GM}{R}}

Put (R)=Re+h,M=Me

Speed V=GmeRe+hV=\sqrt{\frac{Gm_e}{R_e+h}}

V=6.67×1011×5.97×10246400×103+356000V=\sqrt{\frac{6.67\times10^{-11}\times5.97\times10^{24}}{6400\times10^3+356000}}

V=6.67×1011×5.97×10246756000=7.6772km/secV=\sqrt{\frac{6.67\times10^{-11}\times5.97\times10^{24}}{6756000}}=7.6772km/sec

V=7.677km/sec

Time period

T=2πRVT=\frac{2\pi R}{V}

T=2×3.14×67560007677=5526.59secT=\frac{2\times3.14\times6756000}{7677}=5526.59sec

T=5526.5960×60=1.53hrT=\frac{5526.59}{60\times60}=1.53hr


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment