resolve each of the following vector into components.
•F1=11×10⁴N at 33°to the positive x-axis
•F2=15 GN at 28° to the positive x-axis
•F3=11.3kN at 193° to the positive x-axis
•F4=125 ×10⁵ N at 317° to the positive x-axis
Explanations & Calculations
For the first situation,
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_{\\text{along x-axis}}&=\\small (11\\times10^4\\,N) \\times \\cos33\\\\\n&=\\small 9.23\\times10^4\\,N\\\\\n\\small F_{\\text{along y-axis}}&=\\small (11\\times10^4\\,N)\\times\\sin33\\\\\n&=\\small 5.99\\times10^4\\,N\n\\end{aligned}"
The procedure is the same for the second situation as the angle is acute.
For the third situation,
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_{\\text{along x-axis}}&=\\small 11.3\\,kN\\times\\cos193\\\\\n&=\\small -11.01\\,kN\\cdots(\\text{along negative x-axis})\\\\\n\\small F_{\\text{along y-axis}}&=\\small 11.3\\,kN\\times\\sin193\\\\\n&=\\small -2.54\\,kN\\cdots(\\text{along negative y-axis})\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_{\\text{along (-) x-axis}}&=\\small 11.3\\times\\cos13\\\\\n&=\\small 11.01\\,kN\\\\\n\\small F_{\\text{along (-) y-axis }}&=\\small 11.3\\times\\sin13\\\\\n&=\\small 2.54\\,kN\n\\end{aligned}"
This is the same procedure for the fourth case as well and the acute lies below the positive x-axis.
Comments
Leave a comment