A billiard ball moving at 5.0m/s strikes a stationary ball of the same mass. After the collision, the ball moves at 4.33m/s at an angle of 30.0° with respect to the original line of motion. Determine whether or not the collision was perfectly elastic.
All Balls are identical so have same mass M.
"P_{xi}=5M\\\\\nP_{xf}=4.33\\cos{30\\degree}M+ V\\sin{\\theta}M\\\\"
Applying conservation of linear momentum along original line of motion.
"V\\cos{\\theta}=5-4.33\\times{\\cfrac{\\sqrt{3}}{2}}......Eq[1]""V\\cos{\\theta}=5-4.33\\times{\\cfrac{\\sqrt{3}}{2}}......Eq[1]"Applying conservation of linear momentum along perpendicular direction.
"P_{yi}=P_{yf}\\\\\n0=4.33M\\sin{30\\degree}-MV\\sin{\\theta}\\\\\nV\\sin{\\theta}= \\cfrac{4.33}{2}......Eq[2]\\\\"on solving Eq[1] & Eq[2], we get,
"V=\\sqrt{\\bigg(5-4.33\\cfrac{\\sqrt{3}}{2}\\bigg)^2+\\bigg(\\cfrac{4.33}{2}\\bigg)^2}\\\\\nV=2.5m\/sec""V=\\sqrt{\\bigg(5-4.33\\cfrac{\\sqrt{3}}{2}\\bigg)^2+\\bigg(\\cfrac{4.33}{2}\\bigg)^2}\\\\\nV=2.5m\/sec""V=\\sqrt{\\bigg(5-4.33\\cfrac{\\sqrt{3}}{2}\\bigg)^2+\\bigg(\\cfrac{4.33}{2}\\bigg)^2}\\\\\nV=2.5m\/sec"and
"\\theta=\\tan^{-1}\\bigg(\\cfrac{4.33}{10-4.33\\times{\\sqrt{3}}}\\bigg)\\\\\n\\theta=\\tan^{-1}(1.72)=59.8\\degree\\approx60\\degree""\\theta=\\tan^{-1}\\bigg(\\cfrac{4.33}{10-4.33\\times{\\sqrt{3}}}\\bigg)\\\\\n\\theta=\\tan^{-1}(1.72)=59.8\\degree\\approx60\\degree"yi is the same as yf so the collision was perfectly elastic since it is consistent with other data
Comments
Leave a comment