mx′′+kx=−Ffr
Ffr=μkmg=0.35⋅0.9g=3.1 N
then:
0.9x′′+500x=−3.1
characteristic equation:
0.9r2+500=0
r=±23.6i
complementary solution:
xc=c1cos23.6t+c2sin23.6t
particular solution:
xp=A
500A=−3.1⟹A=−0.0062
so,
x(t)=c1cos23.6t+c2sin23.6t−0.0062
we have:
x(0)=0.05
x′(0)=0
then:
c1=0.05−0.0062=0.04
x′(t)=−23.6c1sin23.6t+23.6c2cos23.6t
x′(0)=23.6c2=0⟹c2=0
x(t)=0.04cos23.6t−0.0062
x′(t)=−0.94sin23.6t
for the speed of the block as it passes through equilibrium:
x(t)=0.04cos23.6t−0.0062=0
t=arccos(0.0062/0.04)/23.6=0.06 s
x′(0.06)=v(0.06)=−0.94sin(23.6⋅0.06)=−0.93 m/s
Comments