(i) We find the value for gamma with
γ = 1 1 − ( v / c ) 2 γ = 1 1 − ( 0.500 ) 2 = 1 0.750 ∴ γ = 1 0.866 = 1.15 γ=\frac{1}{\sqrt{1−(v/c)²}}
\\ \gamma =\frac{1}{\sqrt{1−(0.500)²}}=\frac{1}{\sqrt{0.750}}
\\ \therefore \gamma =\frac{1}{0.866}=1.15 γ = 1 − ( v / c ) 2 1 γ = 1 − ( 0.500 ) 2 1 = 0.750 1 ∴ γ = 0.866 1 = 1.15
(ii) The kinetic energy required is equal to
K E = ( γ m − m ) c 2 = ( γ − 1 ) m c 2 ∴ K E = m c 2 ( 1 1 − ( v / c ) 2 − 1 ) We substitute and find KE K E = ( 1 1 − ( 0.90 ) 2 − 1 ) ( 9.11 × 1 0 − 31 k g ) ( 3 × 1 0 8 m s ) 2 ∴ K E = 1.06 × 1 0 − 13 J KE = (\gamma m - m)c²=(\gamma - 1)mc²
\\ \therefore KE= mc² \Big(\frac{1}{\sqrt{1−(v/c)²}}-1\Big)
\\ \text{We substitute and find KE}
\\ KE = (\frac{1}{\sqrt{1−(0.90)²}}-1)(9.11×10^{-31}{kg})(3×10⁸\frac{m}{s})²
\\ \therefore KE = 1.06×10^{-13}J K E = ( γm − m ) c 2 = ( γ − 1 ) m c 2 ∴ K E = m c 2 ( 1 − ( v / c ) 2 1 − 1 ) We substitute and find KE K E = ( 1 − ( 0.90 ) 2 1 − 1 ) ( 9.11 × 1 0 − 31 k g ) ( 3 × 1 0 8 s m ) 2 ∴ K E = 1.06 × 1 0 − 13 J
In conclusion, (i) 𝛾 = 1.15 when v/c = 0.50, while (ii) we need 1.06 × 10 -13 J of kinetic energy to take an electron from the rest up to v/c = 0.90.
Comments