(a) Let's draw this movement:
(b) Let's first find x x x - and y y y -components of resultant displacement of jet:
R x = 700 k m × c o s 9 0 ∘ + 300 k m × c o s 18 0 ∘ + 400 k m × c o s 9 0 ∘ + 800 k m × c o s 0 ∘ = 500 k m , R_{x}=700\ km\times cos90^{\circ}+300\ km\times cos180^{\circ}+400\ km\times cos90^{\circ}+800\ km\times cos0^{\circ}=500\ km, R x = 700 km × cos 9 0 ∘ + 300 km × cos 18 0 ∘ + 400 km × cos 9 0 ∘ + 800 km × cos 0 ∘ = 500 km ,
R y = 700 k m × s i n 9 0 ∘ + 300 k m × s i n 18 0 ∘ + 400 k m × s i n 9 0 ∘ + 800 k m × s i n 0 ∘ = 1100 k m . R_{y}=700\ km\times sin90^{\circ}+300\ km\times sin180^{\circ}+400\ km\times sin90^{\circ}+800\ km\times sin0^{\circ}=1100\ km. R y = 700 km × s in 9 0 ∘ + 300 km × s in 18 0 ∘ + 400 km × s in 9 0 ∘ + 800 km × s in 0 ∘ = 1100 km .
We can find the magnitude of resultant displacement of jet from the Pythagorean theorem:
R = R x 2 + R y 2 = ( 500 k m ) 2 + ( 1100 k m ) 2 = 1208.3 k m . R=\sqrt{R_x^2+R_y^2}=\sqrt{(500\ km)^2+(1100\ km)^2}=1208.3\ km. R = R x 2 + R y 2 = ( 500 km ) 2 + ( 1100 km ) 2 = 1208.3 km . We can find the direction of resultant displacement from the geometry:
θ = t a n − 1 ( R y R x ) = t a n − 1 ( 1100 k m 500 k m ) = 65. 5 ∘ N o f E . \theta=tan^{-1}(\dfrac{R_y}{R_x})=tan^{-1}(\dfrac{1100\ km}{500\ km})=65.5^{\circ}\ N\ of\ E. θ = t a n − 1 ( R x R y ) = t a n − 1 ( 500 km 1100 km ) = 65. 5 ∘ N o f E .
Comments