3 d^ 2 y dx^ 2 + dy dx -14y=0;y(0)=1,y^ prime (0)= -1
"3y''+y'-14=0\\\\\n\\textsf{The auxiliary equation is}\\\\\n3m\u00b2+m-14\\\\\nm_1=2, m_2=\\frac{-7}{3}\\\\\n\\textsf{Hence, the general solution is}\\\\\ny=Ae^{2x}+Be^{\\frac{-7}{3}x}\\\\\n\\therefore y'=2Ae^{2x}-\\frac73Be^{\\frac{-7}{3}x}\\\\\n\\textsf{Given,}\\\\\n\ny(0)=1, y'(0)=-1\\\\\n\\textsf{substituting the given conditions, we have}\\\\\n1=A+B\\\\\nB=1-A\\\\\n\\textsf{Also,}\\\\\n-1=2A-\\frac73B\\\\\n-3=6A-7+7A\\\\\n13A=4\\\\\nA=\\frac4{13},\\\\\n\nB=\\frac9{13}\\\\\n\\textsf{Hence, the particular solution is}\\\\\ny=\\frac4{13}e^{2x}+\\frac9{13}e^{-\\frac73x}\\\\"
Comments
Leave a comment