A particle moves along a straight line with constant acceleration a=3 m/s2
. At t=0 the
position of the particle is x0=3 m and the particle is at rest (v0=0).
i) Find the position and the velocity of the particle at t=2 s [3 mks]
ii) Find the position of the particle when v=30 m/s [3 mks]
The information given is
The initial position is "X_{\\circ}=0\\;m"
The initial velocity is "V_{\\circ}=0 \\; m\/s"
The acceleration is "a=3\\;m\/s^{2}"
Part i
The position is given by
"X=X_{\\circ}+V_{\\circ}\\;t+\\dfrac{1}{2}\\;a\\;t^{2}"
Evaluating numerically in t=2 s
"X=X_{\\circ}+V_{\\circ}\\;t+\\dfrac{1}{2}\\;a\\;t^{2}\\\\\nX=0\\;m+0\\;m\/s\\times 2\\;s+\\dfrac{1}{2}\\times 3\\;m\/s^{2}\\times (2\\;s)^{2}\\\\\nX=6\\;m"
The position at t-2 s is "X=6\\;m"
The velocity is given by
"V=V_{\\circ}+a\\;t"
Evaluating numerically.
"V=V_{\\circ}+a\\;t\\\\\nV=0\\;m\/s+3\\;m\/s\\times 2\\;s\\\\\nV=6\\;m\/s"
The velocity at t= 2s is "V=6\\;m\/s"
Part ii
The velocity is given by
"V=V_{\\circ}+a\\;t"
Obtaining the expression for the time.
"V=V_{\\circ}+a\\;t\\\\\\\\\nV_{\\circ}+a\\;t=V\\\\\\\\\na\\;t=V-V_{\\circ}\\\\\\\\\nt=\\dfrac{V-V_{\\circ}}{ a}\\\\\\\\"
Evaluating numerically.
"t=\\dfrac{30\\;m\/s-0\\;m\/s}{ 3\\;m\/s^{2}}\\\\\\\\\nt=10\\;s"
The time where the velocity is 30 m/s is "t=10\\;s"
The position is given by
"X=X_{\\circ}+V_{\\circ}\\;t+\\dfrac{1}{2}\\;a\\;t^{2}"
Evaluating numerically.
"X=0\\;m+0\\;m\/s\\times 10\\;s+\\dfrac{1}{2}\\times 3\\;m\/s^{2}\\times (10\\;s)^{2}\\\\\nX=150\\;m"
The position when V=30 m/s is "X=150\\;m"
Comments
Leave a comment