Question #279608

A particle moves along a straight line with constant acceleration a=3 m/s2


. At t=0 the


position of the particle is x0=3 m and the particle is at rest (v0=0).


i) Find the position and the velocity of the particle at t=2 s [3 mks]


ii) Find the position of the particle when v=30 m/s [3 mks]

1
Expert's answer
2021-12-14T09:27:19-0500

The information given is

The initial position is X=0  mX_{\circ}=0\;m

The initial velocity is V=0  m/sV_{\circ}=0 \; m/s

The acceleration is a=3  m/s2a=3\;m/s^{2}


Part i

The position is given by

X=X+V  t+12  a  t2X=X_{\circ}+V_{\circ}\;t+\dfrac{1}{2}\;a\;t^{2}


Evaluating numerically in t=2 s


X=X+V  t+12  a  t2X=0  m+0  m/s×2  s+12×3  m/s2×(2  s)2X=6  mX=X_{\circ}+V_{\circ}\;t+\dfrac{1}{2}\;a\;t^{2}\\ X=0\;m+0\;m/s\times 2\;s+\dfrac{1}{2}\times 3\;m/s^{2}\times (2\;s)^{2}\\ X=6\;m


The position at t-2 s is X=6  mX=6\;m


The velocity is given by

V=V+a  tV=V_{\circ}+a\;t

Evaluating numerically.

V=V+a  tV=0  m/s+3  m/s×2  sV=6  m/sV=V_{\circ}+a\;t\\ V=0\;m/s+3\;m/s\times 2\;s\\ V=6\;m/s


The velocity at t= 2s is V=6  m/sV=6\;m/s


Part ii

The velocity is given by

V=V+a  tV=V_{\circ}+a\;t

Obtaining the expression for the time.

V=V+a  tV+a  t=Va  t=VVt=VVaV=V_{\circ}+a\;t\\\\ V_{\circ}+a\;t=V\\\\ a\;t=V-V_{\circ}\\\\ t=\dfrac{V-V_{\circ}}{ a}\\\\

Evaluating numerically.

t=30  m/s0  m/s3  m/s2t=10  st=\dfrac{30\;m/s-0\;m/s}{ 3\;m/s^{2}}\\\\ t=10\;s

The time where the velocity is 30 m/s is t=10  st=10\;s


The position is given by 

X=X+V  t+12  a  t2X=X_{\circ}+V_{\circ}\;t+\dfrac{1}{2}\;a\;t^{2}

Evaluating numerically.

X=0  m+0  m/s×10  s+12×3  m/s2×(10  s)2X=150  mX=0\;m+0\;m/s\times 10\;s+\dfrac{1}{2}\times 3\;m/s^{2}\times (10\;s)^{2}\\ X=150\;m


The position when V=30 m/s is X=150  mX=150\;m

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS