Two interfering sinusoidal waves are described by the wavefunctions: y1 = A sin(kx-ωt) and y2 = A sin(kx-ωt+φ). If φ cannot exceed π/2 (0 ≤ φ ≤ π/2), then which of the following is true about the resultant amplitude Ares?
y1=Asin(kx−ωt),y_1=A\sin(kx-\omega t),y1=Asin(kx−ωt),
y2=Asin(kx−ωt+φ),y_2=A\sin(k x-\omega t+\varphi),y2=Asin(kx−ωt+φ),
y=y1+y2=2Acosφ2sin(kx−ωt+φ2),y=y_1+y_2=2A\cos\frac{\varphi}2\sin(k x-\omega t+\frac{\varphi}2),y=y1+y2=2Acos2φsin(kx−ωt+2φ),
Ares=2Acosφ2.A_{res}=2A\cos\frac{\varphi}2.Ares=2Acos2φ.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment