a particle in a central force field discribed by the spiral orbit r=r0e^(theta). how to show that the force law is inverse cube and that (theta) veries logrithmically with t?.
r=r0ebθ,r=r_0e^{b\theta},r=r0ebθ,
u=1r=e−bθr0,u=\frac 1r=\frac{e^{-b\theta}}{r_0},u=r1=r0e−bθ,
d2udθ2+u=Fmr02u2,\frac{d^2u}{d\theta^2}+u=\frac{F}{mr_0^2u^2},dθ2d2u+u=mr02u2F,
(b2e−bθr0+e−bθr0)⋅1r2=Fmr02,(b^2 \frac{e^{-b\theta}}{r_0}+\frac{e^{-b\theta}}{r_0})\cdot \frac 1{r^2}=\frac F{mr_0^2},(b2r0e−bθ+r0e−bθ)⋅r21=mr02F,
(1+b2)e−bθr0⋅1r2=Fmr02,(1+b^2)\frac{e^{-b\theta}}{r_0}\cdot \frac 1{r^2}=\frac F{mr_0^2},(1+b2)r0e−bθ⋅r21=mr02F,
(1+b2)1r3=Fmr02,(1+b^2)\frac 1{r^3}=\frac F{mr_0^2},(1+b2)r31=mr02F,
F∼1r3.F\sim \frac 1{r^3}.F∼r31.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments