Question #278931

a particle in a central force field discribed by the spiral orbit r=r0e^(theta). how to show that the force law is inverse cube and that (theta) veries logrithmically with t?.



1
Expert's answer
2021-12-12T16:43:38-0500

r=r0ebθ,r=r_0e^{b\theta},

u=1r=ebθr0,u=\frac 1r=\frac{e^{-b\theta}}{r_0},

d2udθ2+u=Fmr02u2,\frac{d^2u}{d\theta^2}+u=\frac{F}{mr_0^2u^2},

(b2ebθr0+ebθr0)1r2=Fmr02,(b^2 \frac{e^{-b\theta}}{r_0}+\frac{e^{-b\theta}}{r_0})\cdot \frac 1{r^2}=\frac F{mr_0^2},

(1+b2)ebθr01r2=Fmr02,(1+b^2)\frac{e^{-b\theta}}{r_0}\cdot \frac 1{r^2}=\frac F{mr_0^2},

(1+b2)1r3=Fmr02,(1+b^2)\frac 1{r^3}=\frac F{mr_0^2},

F1r3.F\sim \frac 1{r^3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS