Question #272058

A chopper drops boxes of relief goods to a group of people stranded in an island. The goods were released 20.0 m above the sea and landed 40.0 m from a point exactly below where the goods were released. What was the velocity of the goods when they were released? What was the velocity of the chopper?


1
Expert's answer
2021-11-29T11:46:34-0500

h=20ms=40mg=9.8ms2Before the released of the cargo: vchopper=vcargoAfter the release of the cargo:vcargo=vx+vyvx=vchoppervy=vy0+gtvy0=0t=2hg=2209.8=2.02svy=gt=9.82.0219.80mss=vxtvx=st=402.0219.80msh = 20m \newline s = 40m\newline g = 9.8\frac{m}{s^2} \text{Before the released of the cargo: }\newline v_{chopper}= v_{cargo}\newline \text{After the release of the cargo:}\newline \vec v_{cargo}= \vec v_x+\vec v_y\newline \vec v_x = \vec v_{chopper}\newline v_y = v_{y_0}+gt\newline v_{y_0}= 0\newline t = \sqrt{\frac{2h}{g}}= \sqrt{\frac{2*20}{9.8}}=2.02s\newline v_y = gt = 9.8*2.02\approx 19.80\frac{m}{s}\newline s = v_xt\newline v_x=\frac{s}{t}= \frac{40}{2.02}\approx19.80\frac{m}{s}

v=vx2+vy2=28msv = \sqrt{v_x^2+v_y^2}=28\frac{m}{s}


Answer: \text{Answer: }

vchopper=19.80msv_{chopper} = 19.80\frac{m}{s}

vcargo=19.80msduring separation from the helicopterv'_{cargo} = 19.80\frac{m}{s}- \text{during separation from the helicopter}

vcargo=28.0msduring the landing of the cargov_{cargo} = 28.0\frac{m}{s}- \text{during the landing of the cargo}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS