Question #263247

1.   A volleyball player serves a ball with his height of 1.5-meter height and strikes the floor at point three meter horizontally.

a.   Time of flight of the ball

b.   Its horizontal velocity


1
Expert's answer
2021-11-09T10:58:26-0500

Explanations & Calculations


s=utR=vxtvx=Rt(1)s=ut+12at2h=vyt+12(g)t2(2)tanθ=vyvx(3)\qquad\qquad \begin{aligned} \to s&=ut\\ \small R&=\small v_xt\to v_x =\frac{R}{t}\cdots(1)\\ \\ \uparrow s&=ut+\frac{1}{2}at^2\\ \small -h&=\small v_yt+\frac{1}{2}(-g)t^2\cdots(2)\\ \\ \small \tan\theta&=\small \frac{v_y}{v_x}\cdots(3)\\ \end{aligned}

  • By eliminating vx&vy\small v_x\, \&\,v_y from those equations,

vy=Rttanθh=Rtanθ12gt2=2(Rtanθ+h)g\qquad\qquad \begin{aligned} \small v_y&=\small \frac{R}{t}\tan\theta\\ \\ \small -h&=\small R\tan\theta-\frac{1}{2}gt^2\\ \small &=\small \sqrt{\frac{2(R\tan\theta+h)}{g}} \end{aligned}


  • If the delivery was done horizontally, then the velocity components become like this and the final answer follows accordingly.

θ=0tanθ=0vy=0t=2hg=2×1.59.8=0.6svx=3.0m0.6s=5ms1\qquad\qquad \begin{aligned} \small \theta&=\small 0\\ \small \tan\theta &=\small 0\\ \small v_y&=\small 0\\ \\ \small t&=\small \sqrt{\frac{2h}{g}}\\ &=\small \sqrt{\frac{2\times1.5}{9.8}}\\ &=\small 0.6\,s\\ \\ \small v_x&=\small \frac{3.0m}{0.6s}\\ &=\small 5ms^{-1} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS