Explanations & Calculations
→ s = u t R = v x t → v x = R t ⋯ ( 1 ) ↑ s = u t + 1 2 a t 2 − h = v y t + 1 2 ( − g ) t 2 ⋯ ( 2 ) tan θ = v y v x ⋯ ( 3 ) \qquad\qquad
\begin{aligned}
\to s&=ut\\
\small R&=\small v_xt\to v_x =\frac{R}{t}\cdots(1)\\
\\
\uparrow s&=ut+\frac{1}{2}at^2\\
\small -h&=\small v_yt+\frac{1}{2}(-g)t^2\cdots(2)\\
\\
\small \tan\theta&=\small \frac{v_y}{v_x}\cdots(3)\\
\end{aligned} → s R ↑ s − h tan θ = u t = v x t → v x = t R ⋯ ( 1 ) = u t + 2 1 a t 2 = v y t + 2 1 ( − g ) t 2 ⋯ ( 2 ) = v x v y ⋯ ( 3 )
By eliminating v x & v y \small v_x\, \&\,v_y v x & v y from those equations, v y = R t tan θ − h = R tan θ − 1 2 g t 2 = 2 ( R tan θ + h ) g \qquad\qquad
\begin{aligned}
\small v_y&=\small \frac{R}{t}\tan\theta\\
\\
\small -h&=\small R\tan\theta-\frac{1}{2}gt^2\\
\small &=\small \sqrt{\frac{2(R\tan\theta+h)}{g}}
\end{aligned} v y − h = t R tan θ = R tan θ − 2 1 g t 2 = g 2 ( R tan θ + h )
If the delivery was done horizontally, then the velocity components become like this and the final answer follows accordingly. θ = 0 tan θ = 0 v y = 0 t = 2 h g = 2 × 1.5 9.8 = 0.6 s v x = 3.0 m 0.6 s = 5 m s − 1 \qquad\qquad
\begin{aligned}
\small \theta&=\small 0\\
\small \tan\theta &=\small 0\\
\small v_y&=\small 0\\
\\
\small t&=\small \sqrt{\frac{2h}{g}}\\
&=\small \sqrt{\frac{2\times1.5}{9.8}}\\
&=\small 0.6\,s\\
\\
\small v_x&=\small \frac{3.0m}{0.6s}\\
&=\small 5ms^{-1}
\end{aligned} θ tan θ v y t v x = 0 = 0 = 0 = g 2 h = 9.8 2 × 1.5 = 0.6 s = 0.6 s 3.0 m = 5 m s − 1
Comments