Question #262070

NASA is expected to send a 2600-kg satellite 450 km above the earth’s surface.


(a) What is its radius?


(b) What speed will it have?


(c) What is its orbital period?


(d) What is its radial acceleration?

1
Expert's answer
2021-11-14T17:12:03-0500

(a) We can find the radius of the satellite as follows:


R=RE+h=6.37×106 m+4.5×105 m=6.82×106 m.R=R_E+h=6.37\times10^6\ m+4.5\times10^5\ m=6.82\times10^6\ m.

(b) We can find the speed of the satellite as follows:


Fc=Fg,F_c=F_g,mv2R=GMEmR2,\dfrac{mv^2}{R}=\dfrac{GM_Em}{R^2},v=GMER=6.67×1011 N×m2kg2×5.98×1024 kg6.82×106 m,v=\sqrt{\dfrac{GM_E}{R}}=\sqrt{\dfrac{6.67\times10^{-11}\ \dfrac{N\times m^2}{kg^2}\times5.98\times10^{24}\ kg}{6.82\times10^6\ m}},v=7647 ms.v=7647\ \dfrac{m}{s}.

(c) We can find the orbital period of the satellite as follows:


v=2πRT,v=\dfrac{2\pi R}{T},T=2πRv=2π×6.82×106 m7647 ms=5604 s,T=\dfrac{2\pi R}{v}=\dfrac{2\pi\times6.82\times10^6\ m}{7647\ \dfrac{m}{s}}=5604\ s,T=5604 s×1 h3600 s=1.56 h.T=5604\ s\times\dfrac{1\ h}{3600\ s}=1.56\ h.

(d) We can find the radial (centripetal) acceleration as follows:

ac=v2R=(7647 ms)26.82×106 m=8.57 ms2.a_c=\dfrac{v^2}{R}=\dfrac{(7647\ \dfrac{m}{s})^2}{6.82\times10^6\ m}=8.57\ \dfrac{m}{s^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS