(a) We can find the radius of the satellite as follows:
R = R E + h = 6.37 × 1 0 6 m + 4.5 × 1 0 5 m = 6.82 × 1 0 6 m . R=R_E+h=6.37\times10^6\ m+4.5\times10^5\ m=6.82\times10^6\ m. R = R E + h = 6.37 × 1 0 6 m + 4.5 × 1 0 5 m = 6.82 × 1 0 6 m . (b) We can find the speed of the satellite as follows:
F c = F g , F_c=F_g, F c = F g , m v 2 R = G M E m R 2 , \dfrac{mv^2}{R}=\dfrac{GM_Em}{R^2}, R m v 2 = R 2 G M E m , v = G M E R = 6.67 × 1 0 − 11 N × m 2 k g 2 × 5.98 × 1 0 24 k g 6.82 × 1 0 6 m , v=\sqrt{\dfrac{GM_E}{R}}=\sqrt{\dfrac{6.67\times10^{-11}\ \dfrac{N\times m^2}{kg^2}\times5.98\times10^{24}\ kg}{6.82\times10^6\ m}}, v = R G M E = 6.82 × 1 0 6 m 6.67 × 1 0 − 11 k g 2 N × m 2 × 5.98 × 1 0 24 k g , v = 7647 m s . v=7647\ \dfrac{m}{s}. v = 7647 s m . (c) We can find the orbital period of the satellite as follows:
v = 2 π R T , v=\dfrac{2\pi R}{T}, v = T 2 π R , T = 2 π R v = 2 π × 6.82 × 1 0 6 m 7647 m s = 5604 s , T=\dfrac{2\pi R}{v}=\dfrac{2\pi\times6.82\times10^6\ m}{7647\ \dfrac{m}{s}}=5604\ s, T = v 2 π R = 7647 s m 2 π × 6.82 × 1 0 6 m = 5604 s , T = 5604 s × 1 h 3600 s = 1.56 h . T=5604\ s\times\dfrac{1\ h}{3600\ s}=1.56\ h. T = 5604 s × 3600 s 1 h = 1.56 h . (d) We can find the radial (centripetal) acceleration as follows:
a c = v 2 R = ( 7647 m s ) 2 6.82 × 1 0 6 m = 8.57 m s 2 . a_c=\dfrac{v^2}{R}=\dfrac{(7647\ \dfrac{m}{s})^2}{6.82\times10^6\ m}=8.57\ \dfrac{m}{s^2}. a c = R v 2 = 6.82 × 1 0 6 m ( 7647 s m ) 2 = 8.57 s 2 m .
Comments