Maskbyte is the furthest star from earth. It has a mass of 0.123 times the mass of planet Mekaverse. Calculate the orbital radius and velocity of a planet which has a measured orbital period of 20.4 days!
Mearth=5.972×1024kgM_{earth} = 5.972 × 10^{24} kgMearth=5.972×1024kg
Mp=0.123MearthM_p = 0.123M_{earth}Mp=0.123Mearth
T=20.4 days=20.4∗86400sT = 20.4 \space days = 20.4 * 86400 sT=20.4 days=20.4∗86400s
M=43πR3→R=3M4π3=3∗0.123∗5.972∗10244∗3.143=6∗107mM = \frac{4}{3}\pi R^3\to R = \sqrt[3]{\large\frac{3M}{4\pi}}=\sqrt[3]{\large\frac{3 * 0.123*5.972*10^{24}}{4*3.14}} = 6*10^7mM=34πR3→R=34π3M=34∗3.143∗0.123∗5.972∗1024=6∗107m
v=2πRT=2π3M4π3T=2∗3.14∗3∗0.123∗5.972∗10244∗3.14320.4∗864000=200m/cv = \frac{2\pi R}{T}=\frac{2\pi \sqrt[3]{\large\frac{3M}{4\pi}}}{T} = \frac{2*3.14*\sqrt[3]{\large\frac{3 * 0.123*5.972*10^{24}}{4*3.14}}}{20.4*864000}=200 m/cv=T2πR=T2π34π3M=20.4∗8640002∗3.14∗34∗3.143∗0.123∗5.972∗1024=200m/c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments