Assume 2 ππ of gas, for which π = 26 ππ‘.ππ ππ.Β°π and π = 1.10, undergoing a polytropic process from π1 = 15 ππ ππ and π‘1 = 100β to π2 = 75 ππ ππ and π2 = 3.72 ππ‘3 . For both nonflow and steady-flow (βπ = 0, βπΎ = 0) processes, determine (a) π in ππ π = πΆ; (b) βπ», βπ, πππ βπ; (c) β« πππ πππ β β« πππ; (d) π πππ π.
"m= 2 \\;lb \\\\\n\nR = 26 \\;ft \\;lb \/lb \\;\u00b0R \\\\\n\nk = 1.1 \\\\\n\np_1 = 15 \\;psia = 15 \\times 144 = 2160 \\; lbf\/ft^2\\\\\n\nT_1 = 100 \\;\u00b0F = 559.67 \\;\u00b0R \\\\\n\np_2 = 75 \\;psia = 75 \\times 144 = 10800 \\;lbf\/ft^2\\\\\n\nV_2 = 3.72 \\;ft^3"
Using ideal gas equation:
"p_1V_1 = mRT_1 \\\\\n\nV_1 = \\frac{mRT_1}{p_1} \\\\\n\n= \\frac{2 \\times 26 \\times 559.67}{2160} \\\\\n\n= 13.48 \\;ft^3\n\np_2V_2 =mRT_2 \\\\\n\nT_2 = \\frac{p_2V_2}{mR} \\\\\n\n= \\frac{10800 \\times 3.72}{2 \\times 26} \\\\\n\n= 772.62 \\; \u00b0R"
Using relations
"\\frac{c_p}{c_v} = k \\\\\n\nc_p -c_v = R \\\\\n\nc_p = \\frac{kR}{k-1} \\\\\n\nc_p = \\frac{1.1 \\times 26}{1.1-1} \\\\\n\nc_p = 286 \\; ft \\; lbf\/lb \\;\u00b0R \\\\\n\nc_v = \\frac{R}{k-1} \\\\\n\nc_v = \\frac{28}{1.1-1} \\\\\n\nc_v = 260 \\; ft \\;lbf\/lb \\; \u00b0R"
(a)
"p_1V_1^n = p_2V_2^n \\\\\n\n\\frac{p_1}{p_2} = (\\frac{V_2}{V_1})^n \\\\\n\nln(\\frac{p_1}{p_2}) = ln(\\frac{V_2}{V_1})^n \\\\\n\nn = \\frac{ln(\\frac{p_1}{p_2})}{ln(\\frac{V_2}{V_1})} \\\\\n\nn = \\frac{ln(\\frac{15}{75})}{ln(\\frac{3.72}{13.48})} \\\\\n\nn=1.25"
(b)
"\u0394H = H_2 -H_1 =m(h_2-h_1) =m(u_2p_2V_2 -u_1 -p_1V_1) \\\\\n\n\u0394H = m(u_2-u_1 +p_2V_2 -p_1V_1) \\\\\n\n=mc_v(T_2-T_1) + p_2V_2 -p_1V_1 \\\\\n\n= 2 \\times 260(772.62-559.67) + 10800 \\times 3.72 \u2013 2160 \\times 13.48 \\\\\n\n= 110734+40176 -29116.8 \\\\\n\n= 121793.2 \\;lbf \\cdot ft \\\\\n\n1 \\;BTU = 778 \\;lbf \\cdot ft \\\\\n\n\u0394H = \\frac{1211793.2}{778}=156.5 \\;BTU \\\\\n\n\u0394U = mc_v(T_2-T_1) = 2 \\times 260 (772.62 -559.67) \\\\\n\n= 110734 \\;lbf \\cdot ft \\\\\n\n\u0394U = \\frac{110734}{778} = 142.3 \\;BTU \\\\\n\n\u0394S = mc_p ln(\\frac{V_2}{V_1}) + mc_v ln(\\frac{p_2}{p_1}) \\\\\n\n= 2 \\times 286 \\times ln(\\frac{3.72}{13.48}) + 2 \\times 260 \\times ln(\\frac{75}{15}) \\\\\n\n= 100.47 \\;lbf \\cdot ft\/ \u00b0R \\\\\n\n\u0394S = \\frac{100.47}{778} = 0.129 \\;BTU\/\u00b0R"
(c)
"pV^n = c \\\\\n\np = \\frac{c}{v^n} \\\\\n\n\\int^2_1 \\frac{c}{v^n} dV = c \\int^2_1 V^{-n} dV = c[\\frac{V^{1-n}}{1-n}]^2_1 \\\\\n\n= c[\\frac{V_2^{1-n} -V_1^{1-n}}{1-n}] \\\\\n\n= \\frac{cV_2^{1-n} -cv_1^{1-n}}{1-n} \\\\\n\n= \\frac{p_2v_2^nv_2^{1-n} -p_1v_1^nV_1^{1-n}}{1-n} \\\\\n\n= \\frac{p_1V_1 -p_2V_2}{n-1} \\\\\n\n= \\frac{2160 \\times 13.48 -10800 \\times 3.72}{1.25-1} \\\\\n\n= -44236.8 \\; lbf \\cdot ft \\\\\n\n\\int pdv = \\frac{-44236.8}{778} = -56.86 \\;BTU = -57 \\;BTU \\\\\n\n-\\int Vdp = -\\int^2_1 (\\frac{c}{p})^{1\/n} dp \\\\\n\n= -c^{1\/n} \\int^2_1 p^{-1\/n} dp \\\\\n\n= -c^{1\/n} [\\frac{p^{1- 1\/n}}{1- 1\/n}]^2_1 \\\\\n\n= -c^{1\/n} [\\frac{p_2^{1 \u2013 1\/n} -p_1^{1 -1\/n}}{1 -1\/n}] \\\\\n\n= \\frac{-c^{1\/n} p_2^{1-1\/n} +c^{1\/n}p_1^{1-1\/n}}{1-1\/n} \\\\\n\n= \\frac{-p_2^{1\/n}v_2p_2^{1-1\/n} +p_1^{1\/n}v_1p_1^{1-1\/n}}{1-1\/n} \\\\\n\n= \\frac{n(p_1V_1 -p_2V_2)}{n-1} \\\\\n\n= 1.25(\\frac{p_1V_1 -p_2V_2}{n-1}) \\\\\n\n= 1.25 \\int^2_1 pdV \\\\\n\n= 1.25 \\times -57 \\\\\n\n= -71.25 \\;BTU \\\\\n\n-\\int Vdp = -71.25 \\;BTU"
(d) For a polytropic process:
For non-flow process
"W_{1-2} = \\int pdV = -57 \\;BTU"
For steady flow
"W_{1-2} = -\\int Vdp = -71.3 \\;BTU"
From the first law of thermodynamics
"Q=W+\u0394U \\\\\n\n= -57 +142.3 \\\\\n\n= 85.3 \\;BTU"
Comments
Leave a comment