Answer to Question #256972 in Mechanics | Relativity for Joey

Question #256972

A 0.5Kg rider travelling to the right at 2ms-1 collides with a stationary rider of mass 1Kg. Find the velocities of the two riders after the collision if: a. It is perfectly elastic.

1
Expert's answer
2021-10-26T09:38:26-0400

m1=0.5kg;v1=2msm_1 = 0.5kg; v_1=2\frac{m}{s}

m2=1kg;v2=0m_2 = 1kg;v_2=0

Since a perfectly elastic collision:\text{Since a perfectly elastic collision:} \text{}

m1v1+m2v2=m1u1+m2u2 (1)m_1v_1+m_2v_2 = m_1u_1+m_2u_2\ (1)

m1v122+m2v222=m1u122+m2u222 (2)\frac{m_1v_1^2}{2}+\frac{m_2v_2^2}{2}=\frac{m_1u_1^2}{2}+\frac{m_2u_2^2}{2}\ (2)

from (1)\text{from }(1)

0.52+10=0.5u1+1u20.5*2+1*0= 0.5u_1+1*u_2

u2=10.5u1 (3)u_2= 1-0.5u_1\ (3)

from (2)\text{from }(2)

0.5222+1022=0.5u122+1u222\frac{0.5*2^2}{2}+\frac{1*0^2}{2}=\frac{0.5*u_1^2}{2}+\frac{1*u_2^2}{2}

u22=20.5u12 (4)u_2^2 = 2-0.5u_1^2\ (4)

from (3) and (4)\text{from (3) and (4)}

u22>0u_2^2>0

20.5u12>02-0.5u_1^2>0

u12<4u_1^2<4

(10.5u1)2=20.5u12(1-0.5u_1)^2=2-0.5u_1^2

0.75u12u11=00.75u_1^2-u_1-1 =0

u10.67msu_1\approx -0.67\frac{m}{s}

u1=2(does not satisfy the condition u12<4)u_1'=2(\text{does not satisfy the condition }u_1^2<4)

u2=10.5u1=1+0.50.671.34msu_2= 1-0.5u_1= 1+0.5*0.67\approx 1.34\frac{m}{s}


Answer:\text{Answer:}

0.67ms first rider speed after collision-0.67\frac{m}{s}\text{ first rider speed after collision}

1.34ms second rider speed after collision1.34\frac{m}{s}\text{ second rider speed after collision}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment