Determine the forces couple system at 0 which is equivalent to the two forces applied to the shaft AoB. Is R perpendicular to Mo?
Let use the following example
"F_1 = 710 \\;N \\\\\n\nF_2 = 770 \\;N"
The resultant force "\\vec{R}" is given as
"\\vec{R} = \\vec{F_1} + \\vec{F_2} \\\\\n\n\\vec{R} = (710 cos30 \\hat{k} + 710 sin 30 \\hat{j}) + (770 cos 53 \\hat{k} -770 sin 53 \\hat{j}) \\\\\n\n= (614.87 \\hat{k} + 355 \\hat{j}) + (463.39 \\hat{k} +614.949 \\hat{j}) \\\\\n\n= 1078.26 \\hat{k} -259.949 \\hat{j} \\\\\n\n\\vec{R} = 0 \\hat{i} -259.949 \\hat{j} + 1078.26 \\hat{k}"
Taking moment about point O
"M_o = (-0.075 \\hat{i}) \\vec{F_1} + (0.18 \\hat{i}) \\vec{F_2} \\\\\n\n\n\n= (-0.075) \\hat{i} (614.8 \\hat{k} + 355 \\hat{j}) + (0.18 \\hat{i})(463.39 \\hat{k} -614.949 \\hat{j}) \\\\\n\n\n\n= (46.11 \\hat{i} -26.625 \\hat{k}) + (- 83.41 \\hat{j} -110.689 \\hat{k}) \\\\\n\n\n\nM_0 = -37.3 \\hat{j} -137.314 \\hat{k}"
Check perpendicularity of R and M
"R.M_o = (-259.949 \\hat{j} + 1078.26 \\hat{k})(-37.3 \\hat{j} -137.314 \\hat{k}) \\\\\n\n= 96961 -148060 \\\\\n\n= -51099"
R.Mo ≠ 0
R is NOT perpendicular to Mo.
Comments
Leave a comment