Let use the following example
F1=710NF2=770N
The resultant force R is given as
R=F1+F2R=(710cos30k^+710sin30j^)+(770cos53k^−770sin53j^)=(614.87k^+355j^)+(463.39k^+614.949j^)=1078.26k^−259.949j^R=0i^−259.949j^+1078.26k^
Taking moment about point O
Mo=(−0.075i^)F1+(0.18i^)F2=(−0.075)i^(614.8k^+355j^)+(0.18i^)(463.39k^−614.949j^)=(46.11i^−26.625k^)+(−83.41j^−110.689k^)M0=−37.3j^−137.314k^
Check perpendicularity of R and M
R.Mo=(−259.949j^+1078.26k^)(−37.3j^−137.314k^)=96961−148060=−51099
R.Mo ≠ 0
R is NOT perpendicular to Mo.
Comments