Let use the following example
F 1 = 710 N F 2 = 770 N F_1 = 710 \;N \\
F_2 = 770 \;N F 1 = 710 N F 2 = 770 N
The resultant force R ⃗ \vec{R} R is given as
R ⃗ = F 1 ⃗ + F 2 ⃗ R ⃗ = ( 710 c o s 30 k ^ + 710 s i n 30 j ^ ) + ( 770 c o s 53 k ^ − 770 s i n 53 j ^ ) = ( 614.87 k ^ + 355 j ^ ) + ( 463.39 k ^ + 614.949 j ^ ) = 1078.26 k ^ − 259.949 j ^ R ⃗ = 0 i ^ − 259.949 j ^ + 1078.26 k ^ \vec{R} = \vec{F_1} + \vec{F_2} \\
\vec{R} = (710 cos30 \hat{k} + 710 sin 30 \hat{j}) + (770 cos 53 \hat{k} -770 sin 53 \hat{j}) \\
= (614.87 \hat{k} + 355 \hat{j}) + (463.39 \hat{k} +614.949 \hat{j}) \\
= 1078.26 \hat{k} -259.949 \hat{j} \\
\vec{R} = 0 \hat{i} -259.949 \hat{j} + 1078.26 \hat{k} R = F 1 + F 2 R = ( 710 cos 30 k ^ + 710 s in 30 j ^ ) + ( 770 cos 53 k ^ − 770 s in 53 j ^ ) = ( 614.87 k ^ + 355 j ^ ) + ( 463.39 k ^ + 614.949 j ^ ) = 1078.26 k ^ − 259.949 j ^ R = 0 i ^ − 259.949 j ^ + 1078.26 k ^
Taking moment about point O
M o = ( − 0.075 i ^ ) F 1 ⃗ + ( 0.18 i ^ ) F 2 ⃗ = ( − 0.075 ) i ^ ( 614.8 k ^ + 355 j ^ ) + ( 0.18 i ^ ) ( 463.39 k ^ − 614.949 j ^ ) = ( 46.11 i ^ − 26.625 k ^ ) + ( − 83.41 j ^ − 110.689 k ^ ) M 0 = − 37.3 j ^ − 137.314 k ^ M_o = (-0.075 \hat{i}) \vec{F_1} + (0.18 \hat{i}) \vec{F_2} \\
= (-0.075) \hat{i} (614.8 \hat{k} + 355 \hat{j}) + (0.18 \hat{i})(463.39 \hat{k} -614.949 \hat{j}) \\
= (46.11 \hat{i} -26.625 \hat{k}) + (- 83.41 \hat{j} -110.689 \hat{k}) \\
M_0 = -37.3 \hat{j} -137.314 \hat{k} M o = ( − 0.075 i ^ ) F 1 + ( 0.18 i ^ ) F 2 = ( − 0.075 ) i ^ ( 614.8 k ^ + 355 j ^ ) + ( 0.18 i ^ ) ( 463.39 k ^ − 614.949 j ^ ) = ( 46.11 i ^ − 26.625 k ^ ) + ( − 83.41 j ^ − 110.689 k ^ ) M 0 = − 37.3 j ^ − 137.314 k ^
Check perpendicularity of R and M
R . M o = ( − 259.949 j ^ + 1078.26 k ^ ) ( − 37.3 j ^ − 137.314 k ^ ) = 96961 − 148060 = − 51099 R.M_o = (-259.949 \hat{j} + 1078.26 \hat{k})(-37.3 \hat{j} -137.314 \hat{k}) \\
= 96961 -148060 \\
= -51099 R . M o = ( − 259.949 j ^ + 1078.26 k ^ ) ( − 37.3 j ^ − 137.314 k ^ ) = 96961 − 148060 = − 51099
R.Mo ≠ 0
R is NOT perpendicular to Mo .
Comments