Question #252502

Determine the forces couple system at 0 which is equivalent to the two forces applied to the shaft AoB. Is R perpendicular to Mo?


1
Expert's answer
2021-10-18T11:07:27-0400

Let use the following example


F1=710  NF2=770  NF_1 = 710 \;N \\ F_2 = 770 \;N

The resultant force R\vec{R} is given as

R=F1+F2R=(710cos30k^+710sin30j^)+(770cos53k^770sin53j^)=(614.87k^+355j^)+(463.39k^+614.949j^)=1078.26k^259.949j^R=0i^259.949j^+1078.26k^\vec{R} = \vec{F_1} + \vec{F_2} \\ \vec{R} = (710 cos30 \hat{k} + 710 sin 30 \hat{j}) + (770 cos 53 \hat{k} -770 sin 53 \hat{j}) \\ = (614.87 \hat{k} + 355 \hat{j}) + (463.39 \hat{k} +614.949 \hat{j}) \\ = 1078.26 \hat{k} -259.949 \hat{j} \\ \vec{R} = 0 \hat{i} -259.949 \hat{j} + 1078.26 \hat{k}

Taking moment about point O

Mo=(0.075i^)F1+(0.18i^)F2=(0.075)i^(614.8k^+355j^)+(0.18i^)(463.39k^614.949j^)=(46.11i^26.625k^)+(83.41j^110.689k^)M0=37.3j^137.314k^M_o = (-0.075 \hat{i}) \vec{F_1} + (0.18 \hat{i}) \vec{F_2} \\ = (-0.075) \hat{i} (614.8 \hat{k} + 355 \hat{j}) + (0.18 \hat{i})(463.39 \hat{k} -614.949 \hat{j}) \\ = (46.11 \hat{i} -26.625 \hat{k}) + (- 83.41 \hat{j} -110.689 \hat{k}) \\ M_0 = -37.3 \hat{j} -137.314 \hat{k}

Check perpendicularity of R and M

R.Mo=(259.949j^+1078.26k^)(37.3j^137.314k^)=96961148060=51099R.M_o = (-259.949 \hat{j} + 1078.26 \hat{k})(-37.3 \hat{j} -137.314 \hat{k}) \\ = 96961 -148060 \\ = -51099

R.Mo ≠ 0

R is NOT perpendicular to Mo.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS