Question #251752
A football is kicked with an initial velocity of 20 m/s at an angle of 50-degrees with the horizontal. Determine the time of flight, the horizontal distance, and the peak height of the football.
1
Expert's answer
2021-10-15T10:22:25-0400

The time of flight

T=2usinθg=2×20×sin50°9.81=3.12  sT = \frac{2usin θ}{g} \\ = \frac{2 \times 20 \times sin 50°}{9.81} \\ = 3.12 \;s

The horizontal distance

R=u2sin(2θ)g=202×sin(2(50°))9.81=40.15  mR = \frac{u^2sin(2θ)}{g} \\ = \frac{20^2 \times sin(2(50°))}{9.81} \\ = 40.15\;m

The peak height of the football

H=u2sin2θ2g=202×sin2(50°)2×9.81=11.96  mH = \frac{u^2sin^2θ}{2g} \\ = \frac{20^2 \times sin^2(50°)}{2 \times 9.81} \\ = 11.96 \;m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS