Answer to Question #250735 in Mechanics | Relativity for Madon

Question #250735
a small mass is suspended from a long thread to form a pendulum. The period (T) of the oscillations depend on the mass (M) the length (L) od the thread and acceleration (g) of free fall at the place concern T=kmx ly g2 where x,y and z are unknown and k = 2piers.
1, find the value of x,y,z.
2, hence derive an expression relating t, m, l and g
Consider the formula b=ut at, find the dimension of the equation.
1
Expert's answer
2021-10-13T09:06:57-0400

Explanations & Calculations


a)

"\\qquad\\qquad\n\\begin{aligned}\n\\small T&=\\small 2\\pi.m^xl^yg^z\\\\\n\\small [T]&=\\small T\\to M^0L^0T^1\\\\\n\\small [m]&=\\small M,\\,\\,[l]=L,\\,\\,[g]= LT^{-2}\\\\\n\\\\\n\\small M^0L^0T^1&:\\small M^xL^y(LT^{-2})^z\\\\\n&: \\small M^x L^{(y+z)}T^{-2z}\\\\\n\\\\\n\\small M: \\,\\:0&= x\\\\\n\\small L:\\,\\; 0&=\\small y+z\\to y = -z\\\\\n\\small T:\\,\\, 1 &=\\small -2z\\\\\n\\\\\n\\therefore\\,, \\;\\small x=0,\\, y &=\\frac{1}{2},\\,z=\\frac{-1}{2}\n\\\\\n\\therefore, \\small T&=\\small 2\\pi l^{\\frac{1}{2}}g^{\\frac{-1}{2}}\\\\\n&=\\small 2\\pi \\sqrt{\\frac{l}{g}}\n\\end{aligned}"

b)

"\\qquad\\qquad\n\\begin{aligned}\n\\small b&=\\small ut\\\\\n\\small [b]&=\\small L\\\\\n\\small [ut]&=\\small LT^{-1}\\times T=L\n\\end{aligned}"

  • Therefore, the dimension of the equation is the dimension of the length: L.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS