Question #250735
a small mass is suspended from a long thread to form a pendulum. The period (T) of the oscillations depend on the mass (M) the length (L) od the thread and acceleration (g) of free fall at the place concern T=kmx ly g2 where x,y and z are unknown and k = 2piers.
1, find the value of x,y,z.
2, hence derive an expression relating t, m, l and g
Consider the formula b=ut at, find the dimension of the equation.
1
Expert's answer
2021-10-13T09:06:57-0400

Explanations & Calculations


a)

T=2π.mxlygz[T]=TM0L0T1[m]=M,[l]=L,[g]=LT2M0L0T1:MxLy(LT2)z:MxL(y+z)T2zM:0=xL:  0=y+zy=zT:1=2z,  x=0,y=12,z=12,T=2πl12g12=2πlg\qquad\qquad \begin{aligned} \small T&=\small 2\pi.m^xl^yg^z\\ \small [T]&=\small T\to M^0L^0T^1\\ \small [m]&=\small M,\,\,[l]=L,\,\,[g]= LT^{-2}\\ \\ \small M^0L^0T^1&:\small M^xL^y(LT^{-2})^z\\ &: \small M^x L^{(y+z)}T^{-2z}\\ \\ \small M: \,\:0&= x\\ \small L:\,\; 0&=\small y+z\to y = -z\\ \small T:\,\, 1 &=\small -2z\\ \\ \therefore\,, \;\small x=0,\, y &=\frac{1}{2},\,z=\frac{-1}{2} \\ \therefore, \small T&=\small 2\pi l^{\frac{1}{2}}g^{\frac{-1}{2}}\\ &=\small 2\pi \sqrt{\frac{l}{g}} \end{aligned}

b)

b=ut[b]=L[ut]=LT1×T=L\qquad\qquad \begin{aligned} \small b&=\small ut\\ \small [b]&=\small L\\ \small [ut]&=\small LT^{-1}\times T=L \end{aligned}

  • Therefore, the dimension of the equation is the dimension of the length: L.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS