a=6a=6a=6 and b=10b=10b=10 , α=120∘\alpha =120^\circα=120∘ and β=60∘\beta =60^\circβ=60∘ , R⃗=a⃗+b⃗\vec{R}=\vec{a}+\vec{b}R=a+b
Cosine Rule: R2=a2+b2−2abcosα=62+102−2⋅6⋅10⋅cos120∘=136−120⋅(−12)=196=142R^2=a^2+b^2-2ab\cos \alpha =6^2+10^2-2\cdot 6\cdot 10\cdot \cos 120^\circ=136-120\cdot (-\tfrac{1}2{})=196=14^2R2=a2+b2−2abcosα=62+102−2⋅6⋅10⋅cos120∘=136−120⋅(−21)=196=142
R=14R=14R=14
Sine Rule: 14sin120∘=10sinγ\frac{14}{\sin 120^\circ}=\frac{10}{\sin \gamma}sin120∘14=sinγ10 , sinγ=10sin120∘14\sin \gamma =\frac{10\sin 120^\circ}{14}sinγ=1410sin120∘ , γ=arcsin10sin120∘14≈38.21∘\gamma =\arcsin \frac{10\sin 120^\circ}{14}\approx 38.21^\circγ=arcsin1410sin120∘≈38.21∘
Answer: R=14R=14R=14 and γ=38.21∘\gamma=38.21^\circγ=38.21∘
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments