Q2=tan−1(54)Q2=38.66Q3=tan−(512)Q3=67.38
F1=80NF1=80ı^NF2=150cosQ2ı^+150sinQ2J^=117.13ı^+93.70J^F3=−130cosQ3ı^+130sinQ3J^=−50.00ı^+119.99J^
r1=0ı^+0J^ (distance between 0 and applicat point of force)
r2=2.8ı^+2.4J^r3=0ı^+2.4J^
Ft=F1+F2+F3=80ı^+117.13ı^+93.70J^−50.00ı^+120J^Ft=147.13ı^+213.7J^
So, this force F_t will be acting on the point 0.
a. c=o then the torque will be at 0,
r=101.248 in counter clock wise directional
Ft =147.13 î + 213.7Ĵ
|Ft |=259.45 N (at point 0)
b. c=90Nm=90Nm kˆ (conter clock wise)
rt =90 + 101.248 kˆ (total torque or moment)
rt =191.248 in counter clock wise directional
Ft =147.13 î +213.7Ĵ
|Ft |=259.45 N
Comments