"Q_2=tan^{-1}(\\frac{4}{5}) \\\\\n\nQ_2=38.66 \\\\\n\nQ_3=tan^-(\\frac{12}{5}) \\\\\n\nQ_3=67.38"
"F_1=80N \\\\\n\nF_1=80 \u00ee N \\\\\n\nF_2=150cosQ_2 \u00ee +150sinQ_2 \u0134 \\\\\n\n=117.13 \u00ee +93.70\u0134 \\\\\n\nF_3= - 130 cosQ_3 \u00ee + 130sinQ_3 \u0134 \\\\\n\n= -50.00 \u00ee + 119.99\u0134"
"r_1= 0\u00ee+ 0\u0134" (distance between 0 and applicat point of force)
"r_2= 2.8 \u00ee + 2.4\u0134 \\\\\n\nr_3= 0 \u00ee + 2.4\u0134"
"F_t=F_1 +F_2 +F_3 \\\\\n\n= 80 \u00ee +117.13 \u00ee +93.70\u0134 -50.00\u00ee +120\u0134 \\\\\n\nF_t=147.13 \u00ee +213.7\u0134"
So, this force F_t will be acting on the point 0.
a. c=o then the torque will be at 0,
r=101.248 in counter clock wise directional
"F_t" =147.13 î + 213.7Ĵ
|"F_t" |=259.45 N (at point 0)
b. c=90Nm=90Nm kˆ (conter clock wise)
"r_t" =90 + 101.248 kˆ (total torque or moment)
"r_t" =191.248 in counter clock wise directional
"F_t" =147.13 î +213.7Ĵ
|"F_t" |=259.45 N
Comments
Leave a comment