F = ( 28 + 3 s 2 ) [ k N ] = 1 0 3 ( 28 + 3 s 2 ) [ N ] F = m a = m d v d t = m d v d s d s d t ∴ F = m v d v d s = 1 0 3 ( 28 + 3 s 2 ) ⟹ ∫ v = 0 v v d v = 1 0 3 m ∫ s = 0 s ( 28 + 3 s 2 ) d s ⟹ 1 2 [ v 2 ] v = 0 v = 1 0 3 N 2500 k g [ 28 s + s 3 ] s = 0 s ⟹ v 2 2 = 0.4 m s 2 [ 28 s + s 3 ] m ∴ v = 0.8 m 2 s 2 [ 28 s + s 3 ] F=(28+3s^2)[kN]=10^3(28+3s^2)[N]
\\ F=ma=m\cfrac{dv}{dt}=m \cfrac{dv}{ds}\cfrac{ds}{dt}
\\ \therefore F=mv\cfrac{dv}{ds}=10^3(28+3s^2)
\\ \implies \int^{v}_{v=0} vdv=\cfrac{10^3}{m}\int^{s}_{s=0} (28+3s^2)ds
\\ \implies \cfrac{1}{2} \bigg[ {v}^2 \bigg]^{v}_{v=0}=\cfrac{10^3\,N}{2500\,kg} \bigg[28s+s^3 \bigg]^{s}_{s=0}
\\ \implies \cfrac{v^2}{2} =0.4\cfrac{m}{s^2} \bigg[28s+s^3 \bigg]m
\\ \therefore {v} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28s+s^3 \bigg] } F = ( 28 + 3 s 2 ) [ k N ] = 1 0 3 ( 28 + 3 s 2 ) [ N ] F = ma = m d t d v = m d s d v d t d s ∴ F = m v d s d v = 1 0 3 ( 28 + 3 s 2 ) ⟹ ∫ v = 0 v v d v = m 1 0 3 ∫ s = 0 s ( 28 + 3 s 2 ) d s ⟹ 2 1 [ v 2 ] v = 0 v = 2500 k g 1 0 3 N [ 28 s + s 3 ] s = 0 s ⟹ 2 v 2 = 0.4 s 2 m [ 28 s + s 3 ] m ∴ v = 0.8 s 2 m 2 [ 28 s + s 3 ]
Now we substitute to find:
v = 0.8 m 2 s 2 [ 28 ( 3 ) + ( 3 ) 3 ] = 9.4234 m s {v} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28(3)+(3)^3 \bigg] }=9.4234\frac{m}{s} v = 0.8 s 2 m 2 [ 28 ( 3 ) + ( 3 ) 3 ] = 9.4234 s m
Then we find the time with
v = d s d t = 0.8 m 2 s 2 [ 28 s + s 3 ] ∴ t = ∫ s = 0 s d s v ⟹ t ≊ 0.0446429 log ( s ) − 0.0223214 log ( 28 + s 2 ) {v}=\cfrac{ds}{dt} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28s+s^3 \bigg] }
\\ \therefore t=\int^{s}_{s=0} \cfrac{ds}{v}
\\ \implies t\approxeq 0.0446429 \log(s) - 0.0223214\log(28 + s^2) v = d t d s = 0.8 s 2 m 2 [ 28 s + s 3 ] ∴ t = ∫ s = 0 s v d s ⟹ t ≊ 0.0446429 log ( s ) − 0.0223214 log ( 28 + s 2 )
After substitution (s = 3m), we find:
t = 0.0446429 log ( 3 ) − 0.0223214 log ( 28 + 3 2 ) ≊ 0.0315 s t= 0.0446429 \log(3) - 0.0223214\log(28 + 3^2)\approxeq 0.0315 \,s t = 0.0446429 log ( 3 ) − 0.0223214 log ( 28 + 3 2 ) ≊ 0.0315 s
Reference:
Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments