For a short time the crane in the figure below lifts the 2.50-Mg beam with a force of F = (28+3s2 )kN. Determine the speed of the beam when it has risen s = 3 m. Also, how much time does it take to attain this height starting from rest? [5]
"F=(28+3s^2)[kN]=10^3(28+3s^2)[N]\n\\\\ F=ma=m\\cfrac{dv}{dt}=m \\cfrac{dv}{ds}\\cfrac{ds}{dt}\n\\\\ \\therefore F=mv\\cfrac{dv}{ds}=10^3(28+3s^2)\n\\\\ \\implies \\int^{v}_{v=0} vdv=\\cfrac{10^3}{m}\\int^{s}_{s=0} (28+3s^2)ds\n\\\\ \\implies \\cfrac{1}{2} \\bigg[ {v}^2 \\bigg]^{v}_{v=0}=\\cfrac{10^3\\,N}{2500\\,kg} \\bigg[28s+s^3 \\bigg]^{s}_{s=0} \n\\\\ \\implies \\cfrac{v^2}{2} =0.4\\cfrac{m}{s^2} \\bigg[28s+s^3 \\bigg]m\n\\\\ \\therefore {v} = \\sqrt{ 0.8\\cfrac{m^2}{s^2} \\bigg[28s+s^3 \\bigg] }"
Now we substitute to find:
"{v} = \\sqrt{ 0.8\\cfrac{m^2}{s^2} \\bigg[28(3)+(3)^3 \\bigg] }=9.4234\\frac{m}{s}"
Then we find the time with
"{v}=\\cfrac{ds}{dt} = \\sqrt{ 0.8\\cfrac{m^2}{s^2} \\bigg[28s+s^3 \\bigg] }\n\\\\ \\therefore t=\\int^{s}_{s=0} \\cfrac{ds}{v}\n\\\\ \\implies t\\approxeq 0.0446429 \\log(s) - 0.0223214\\log(28 + s^2)"
After substitution (s = 3m), we find:
"t= 0.0446429 \\log(3) - 0.0223214\\log(28 + 3^2)\\approxeq 0.0315 \\,s"
Reference:
Comments
Leave a comment