Question #247345

For a short time the crane in the figure below lifts the 2.50-Mg beam with a force of F = (28+3s2 )kN. Determine the speed of the beam when it has risen s = 3 m. Also, how much time does it take to attain this height starting from rest? [5]


1
Expert's answer
2021-10-08T12:56:38-0400

F=(28+3s2)[kN]=103(28+3s2)[N]F=ma=mdvdt=mdvdsdsdtF=mvdvds=103(28+3s2)    v=0vvdv=103ms=0s(28+3s2)ds    12[v2]v=0v=103N2500kg[28s+s3]s=0s    v22=0.4ms2[28s+s3]mv=0.8m2s2[28s+s3]F=(28+3s^2)[kN]=10^3(28+3s^2)[N] \\ F=ma=m\cfrac{dv}{dt}=m \cfrac{dv}{ds}\cfrac{ds}{dt} \\ \therefore F=mv\cfrac{dv}{ds}=10^3(28+3s^2) \\ \implies \int^{v}_{v=0} vdv=\cfrac{10^3}{m}\int^{s}_{s=0} (28+3s^2)ds \\ \implies \cfrac{1}{2} \bigg[ {v}^2 \bigg]^{v}_{v=0}=\cfrac{10^3\,N}{2500\,kg} \bigg[28s+s^3 \bigg]^{s}_{s=0} \\ \implies \cfrac{v^2}{2} =0.4\cfrac{m}{s^2} \bigg[28s+s^3 \bigg]m \\ \therefore {v} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28s+s^3 \bigg] }


Now we substitute to find:


v=0.8m2s2[28(3)+(3)3]=9.4234ms{v} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28(3)+(3)^3 \bigg] }=9.4234\frac{m}{s}


Then we find the time with


v=dsdt=0.8m2s2[28s+s3]t=s=0sdsv    t0.0446429log(s)0.0223214log(28+s2){v}=\cfrac{ds}{dt} = \sqrt{ 0.8\cfrac{m^2}{s^2} \bigg[28s+s^3 \bigg] } \\ \therefore t=\int^{s}_{s=0} \cfrac{ds}{v} \\ \implies t\approxeq 0.0446429 \log(s) - 0.0223214\log(28 + s^2)


After substitution (s = 3m), we find:


t=0.0446429log(3)0.0223214log(28+32)0.0315st= 0.0446429 \log(3) - 0.0223214\log(28 + 3^2)\approxeq 0.0315 \,s


Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS