A car has an initial velocity of 30 m/s and an acceleration of -5 m/s2. Find its displacement when it comes to stop.
We use the information provided and we find first the time (for the car to stop, this occurs when Vf = 0m/s) and then the displacement after substitution for a movement with linear acceleration:
"d_0=0\\,m\n\\\\ a=-5\\frac{m}{s^2}\n\\\\ v_i=30\\frac{m}{s}\n\\\\ v_f=0\\frac{m}{s}\n\\\\v_f=v_i+at \n\\\\ \\implies t=\\cfrac{v_f-v_i}{a}=\\cfrac{(0-30)\\frac{m}{s}}{-5\\frac{m}{s^2}}=6\\,s\n\\\\ \\text{Now we substitute t=6s and we find:}\n\\\\d=d_0+v_0t+\\cfrac{at^2}{2}\n\\\\d=0\\,m+(30\\frac{m}{s})(6\\,s)+\\cfrac{-5\\frac{m}{s^2}(6\\,s)^2}{2}\n\\\\ \\implies d=0\\,m+180\\,m-90\\,m=90\\,m"
After substitution, we find that the displacement when the vehicle comes to stop is about 90 m.
Comments
Leave a comment