The traveled distance is
S = S 2 − S 1 S = 10 − 4 S = 6 f t S=S_2-S_1 \\
S=10-4 \\
S=6 \;ft S = S 2 − S 1 S = 10 − 4 S = 6 f t
Calculate the acceleration using the following formula:
v 1 2 − v 2 2 = 2 a s 8 2 − 3 2 = 2 × a × 6 a = 55 12 a = 4.58 f t / s 2 v^2_1 -v^2_2 = 2as \\
8^2 -3^2 = 2 \times a \times 6 \\
a=\frac{55}{12} \\
a= 4.58 \;ft/s^2 v 1 2 − v 2 2 = 2 a s 8 2 − 3 2 = 2 × a × 6 a = 12 55 a = 4.58 f t / s 2
Calculate the velocity using the following formula:
a = d v d t a = ( d v d s ) ( d s d t ) a = v × ( d v d s ) v × d v = 4.58 × d s a=\frac{dv}{dt} \\
a=(\frac{dv}{ds})(\frac{ds}{dt}) \\
a= v \times (\frac{dv}{ds}) \\
v \times dv = 4.58 \times ds a = d t d v a = ( d s d v ) ( d t d s ) a = v × ( d s d v ) v × d v = 4.58 × d s
Apply the integration on both sides.
∫ v d v = 4.58 ∫ d s v 2 2 = 4.58 × s + C 3 2 2 = 4.58 × 4 + C C = − 13.82 v 2 2 = 4.58 × s − 13.82 v 2 = 9.16 s − 27.6 v = ( 9.16 s − 27.6 ) \int vdv = 4.58 \int ds \\
\frac{v^2}{2}=4.58 \times s +C \\
\frac{3^2}{2}= 4.58 \times 4 + C \\
C= -13.82 \\
\frac{v^2}{2}=4.58 \times s -13.82 \\
v^2 = 9.16s -27.6 \\
v = \sqrt{(9.16s-27.6)} ∫ v d v = 4.58 ∫ d s 2 v 2 = 4.58 × s + C 2 3 2 = 4.58 × 4 + C C = − 13.82 2 v 2 = 4.58 × s − 13.82 v 2 = 9.16 s − 27.6 v = ( 9.16 s − 27.6 )
Comments