Replace the three forces acting on the guy wires by a single, equivalent force acting on the flagpole, Use T1=200lb, t2=400 lb and T3=350 lb
Given Data:
The tension in cable AB is: T1=200 lb
The tension in cable AC is: T2=400 lb
The tension in cable AD is: T3=350 lb
The unit tension in cable AB is:
"\\vec{T_1}=(200 \\;lb) \\times \\frac{(5i-6j-14k)\\;ft}{\\sqrt{(5 \\;ft)^2 + (-6 \\;ft)^2 + (-14 \\;ft)^2}} \\\\\n\n=(200\\;lb) \\times \\frac{(5i-6j-14k) \\;ft}{16.03 \\;ft} \\\\\n\n= (62.38i -74.86j -174.67k) \\;lb"
The unit tension in cable AC is:
"\\vec{T_2}=(400 \\;lb) \\times \\frac{(-3i-3j-14k)\\;ft}{\\sqrt{(-3 \\;ft)^2 + (-3 \\;ft)^2 + (-14 \\;ft)^2}} \\\\\n\n=(400\\;lb) \\times \\frac{(-3i-3j-14k) \\;ft}{14.63 \\;ft} \\\\\n\n= (-82.02i -82.02j -382.78k) \\;lb"
The unit tension in cable AD is:
"\\vec{T_3}=(350 \\;lb) \\times \\frac{(2i+6j-14k)\\;ft}{\\sqrt{(2 \\;ft)^2 + (6 \\;ft)^2 + (-14 \\;ft)^2}} \\\\\n\n=(350\\;lb) \\times \\frac{(2i+6j-14k) \\;ft}{15.36 \\;ft} \\\\\n\n= (45.57i -136.72j -319k) \\;lb"
The resultant force acting on the flaqpole is:
"\\vec{R}= [(62.38 -82.02+45.57)i +(-74.86-82.02+136.72)j +(-174.67-382.78-319)k] \\\\\n\n\\vec{R} = 25.93i -20.16j -876.45k \\;lb"
Comments
Leave a comment