Question #234357

Replace the three forces acting on the guy wires by a single, equivalent force acting on the flagpole, Use T1=200lb, t2=400 lb and T3=350 lb


1
Expert's answer
2021-09-07T16:31:31-0400

Given Data:

The tension in cable AB is: T1=200 lb

The tension in cable AC is: T2=400 lb

The tension in cable AD is: T3=350 lb

The unit tension in cable AB is:

T1=(200  lb)×(5i6j14k)  ft(5  ft)2+(6  ft)2+(14  ft)2=(200  lb)×(5i6j14k)  ft16.03  ft=(62.38i74.86j174.67k)  lb\vec{T_1}=(200 \;lb) \times \frac{(5i-6j-14k)\;ft}{\sqrt{(5 \;ft)^2 + (-6 \;ft)^2 + (-14 \;ft)^2}} \\ =(200\;lb) \times \frac{(5i-6j-14k) \;ft}{16.03 \;ft} \\ = (62.38i -74.86j -174.67k) \;lb

The unit tension in cable AC is:

T2=(400  lb)×(3i3j14k)  ft(3  ft)2+(3  ft)2+(14  ft)2=(400  lb)×(3i3j14k)  ft14.63  ft=(82.02i82.02j382.78k)  lb\vec{T_2}=(400 \;lb) \times \frac{(-3i-3j-14k)\;ft}{\sqrt{(-3 \;ft)^2 + (-3 \;ft)^2 + (-14 \;ft)^2}} \\ =(400\;lb) \times \frac{(-3i-3j-14k) \;ft}{14.63 \;ft} \\ = (-82.02i -82.02j -382.78k) \;lb

The unit tension in cable AD is:

T3=(350  lb)×(2i+6j14k)  ft(2  ft)2+(6  ft)2+(14  ft)2=(350  lb)×(2i+6j14k)  ft15.36  ft=(45.57i136.72j319k)  lb\vec{T_3}=(350 \;lb) \times \frac{(2i+6j-14k)\;ft}{\sqrt{(2 \;ft)^2 + (6 \;ft)^2 + (-14 \;ft)^2}} \\ =(350\;lb) \times \frac{(2i+6j-14k) \;ft}{15.36 \;ft} \\ = (45.57i -136.72j -319k) \;lb

The resultant force acting on the flaqpole is:

R=[(62.3882.02+45.57)i+(74.8682.02+136.72)j+(174.67382.78319)k]R=25.93i20.16j876.45k  lb\vec{R}= [(62.38 -82.02+45.57)i +(-74.86-82.02+136.72)j +(-174.67-382.78-319)k] \\ \vec{R} = 25.93i -20.16j -876.45k \;lb


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS