Question #227699

A rock is thrown upward from the level ground in such a way that the maximum height of its flight is equal to its horizontal range R.In terms of its original range R, what is the range Rmax the rock can attain if it is launched at the same speed but at the optimal angle for maximum range?


1
Expert's answer
2021-08-19T14:23:22-0400

R=u2sin2θgH=u2sin2θ2gu2sin2θg=u2sin2θ2g2sin2θ=sin2θ4sinθcosθ=sin2θtanθ=4θ=arctan4=76°R=u2sin2θgAt same speed and optimal angle formaximum rangeθ=45°Rmax=u2gR=Rmaxsin2θRmax=Rsin2θR=\dfrac{u^2\sin{2\theta}}{g}\\ H=\dfrac{u^2\sin^2{\theta}}{2g}\\ \dfrac{u^2\sin{2\theta}}{g}=\dfrac{u^2\sin^2{\theta}}{2g}\\ 2\sin{2\theta}=\sin^2{\theta}\\ 4\sin{\theta}\cos{\theta}=\sin^2{\theta}\\ \tan{\theta}=4\\ \theta=\arctan{4}=76\degree\\ R=\dfrac{u^2\sin{2\theta}}{g}\\ At\ same\ speed\ and\ optimal\ angle\ for\\ maximum\ range\\ \theta=45\degree\\ R_{max}=\dfrac{u^2}{g}\\ R=R_{max}\sin{2\theta}\\ R_{max}=\dfrac{R}{\sin{2\theta}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS