Question #221773

A firefighter stands 50m from a building that caught fire at a particular height. He starts shooting water to remove the blaze. The water moves at a speed of 40m/s and the pipe is inclined or projected at 30 degrees above the horizontal. Calculate the height where the fire caught?


1
Expert's answer
2021-08-03T11:42:45-0400

v=40msv = 40\frac{m}{s}

s=50ms = 50 m

α=30°\alpha = 30\degree

g=9.8ms2\vec g = 9.8 \frac{m}{s^2}

Consider the movement of a stream of water as\text{Consider the movement of a stream of water as}

a body thrown at an angle to the horizon:\text{a body thrown at an angle to the horizon:}

s(t)=vxt;s(t) = v_xt;

vx=vcosαv_x= v\cos\alpha ;

t=s(t)vcosα=5040cos30°=1.44st = \frac{s(t)}{ v\cos\alpha}= \frac{50}{ 40\cos30\degree}=1.44s


h(t)=vytgt22h(t) = v_yt-\frac{gt^2}{2}

vy=vsinαv_y= v\sin\alpha

h(t)=vsinαtgt22=40sin30°=9.83mh(t) = v\sin\alpha *t-\frac{gt^2}{2}=40\sin30\degree=9.83m


Answer: h=9.83m\text{Answer: } h = 9.83m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS