The Kinetic Energy of the object is
K = total energy - rest mass energy ⟹ K = m 0 c 2 1 − v 2 c 2 − m 0 c 2 K=\text{total energy - rest mass energy}\\\implies K= \dfrac{m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}}-m_0c^2 K = total energy - rest mass energy ⟹ K = 1 − c 2 v 2 m 0 c 2 − m 0 c 2
Since Kinetic Energy of the particle is equal to its rest energy. So,
⟹ m 0 c 2 1 − v 2 c 2 − m 0 c 2 = m 0 c 2 ⟹ m 0 c 2 1 − v 2 c 2 = 2 m 0 c 2 ⟹ 1 1 − v 2 c 2 = 2 ⟹ 1 4 = 1 − v 2 c 2 ⟹ v 2 c 2 = 1 − 1 4 = 3 4 ⟹ v = 3 2 c \implies \dfrac{m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}}-m_0c^2=m_0c^2\\\ \\\implies \dfrac{m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}}=2m_0c^2\\\ \\\implies \dfrac{1}{\sqrt{1-\frac{v^2}{c^2}}}=2\\\ \\\implies\dfrac{1}{4}=1-\dfrac{v^2}{c^2}\\\ \\\implies \dfrac{v^2}{c^2}=1-\dfrac{1}{4}=\dfrac{3}{4}\\\ \\\implies v=\dfrac{\sqrt 3}{2}c ⟹ 1 − c 2 v 2 m 0 c 2 − m 0 c 2 = m 0 c 2 ⟹ 1 − c 2 v 2 m 0 c 2 = 2 m 0 c 2 ⟹ 1 − c 2 v 2 1 = 2 ⟹ 4 1 = 1 − c 2 v 2 ⟹ c 2 v 2 = 1 − 4 1 = 4 3 ⟹ v = 2 3 c
∵ c = 2.6 × 1 0 8 m / s \because c=2.6\times 10^8\ \ m/s ∵ c = 2.6 × 1 0 8 m / s
So, speed of object (v) = 3 2 × 2.6 × 1 0 8 = 2.25 × 1 0 8 m / s \dfrac{\sqrt 3}{2}\times 2.6\times 10^8 =2.25\times 10^8\ \ m/s 2 3 × 2.6 × 1 0 8 = 2.25 × 1 0 8 m / s
Comments