Question #214702

Steel wire rope is used to lift a heavy object. We use a 3.1m steel wire that is 6.0mm in diameter and lift a 1.7x103 kg object. Then, the wire elongates 0.17m. Calculate the Young’s modulus for the rope material.


1
Expert's answer
2021-07-08T09:57:25-0400

Explanations & Calculations


  • For the elongation, it bears as it supports the weight, the standards equation could be applied.


  • The area of the wire,

A=π(3.0×103m)2=2.82×105m2\qquad\qquad \begin{aligned} \small A&=\small \pi\,(3.0\times 10^{-3}m)^2=2.82\times10^{-5}m^2 \end{aligned}

  • Stress,

σ=FA=1.7×103kg×9.8ms22.82×105m2=5.9×108Pa\qquad\qquad \begin{aligned} \small \sigma&=\small \frac{F}{A}\\ &=\small \frac{1.7\times10^3kg\times9.8ms^{-2}}{2.82\times10^{-5}m^2}\\ &=\small 5.9\times10^8Pa \end{aligned}

  • Strain,

ϵ=0.17m3.10m=0.05\qquad\qquad \begin{aligned} \small \epsilon&=\small \frac{0.17m}{3.10m}=0.05 \end{aligned}

  • Then the Young''s modulus is,

σ=Y.ϵY=5.9×108Pa0.05=1.18×1010Pa\qquad\qquad \begin{aligned} \small \sigma&=\small Y.\epsilon \\ \small Y&=\small \frac{5.9\times10^8Pa}{0.05}\\ &=\small \bold{1.18\times10^{10}\,Pa} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS