A uniform solid cylinder with mass M and radius 2R rests on a horizontal tabletop. A string is
attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder
can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R
that is mounted on a frictionless axle through its center. A block of mass M is suspended from
the free end of the string (Fig. P10.75). The string does not slip over the pulley surface, and the cylinder rolls without slipping on the tabletop. Find the magnitude of the acceleration of the block after the system is released from rest.
Explanations & Calculations
What happens is,
Apply "\\small \\Sigma F=m a", "\\small \\tau= I\\alpha\\,\\,\\&\\,\\,a=r\\alpha" where applicable and find the acceleration of the hanging mass.
Then,
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\downarrow F&=\\small ma\\\\\n\\small Mg-T_1&=\\small Ma\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\tau&-=\\small I\\alpha\\\\\n\\small T_1R-T_2R&=\\small \\frac{MR^2}{2}.\\frac{a}{R}\\\\\n\\small T_1-T_2&=\\small \\frac{Ma}{2}\\cdots(2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small F&=\\small ma\\\\\n\\small T_2-f&=\\small Ma\\cdots(3)\\\\\\\\\n\n\\small \\tau&=\\small I\\alpha\\\\\n\\small f.(2R)&=\\small \\frac{M.(2R)^2}{2}.\\frac{a}{2R}\\\\\n\\small f&=\\small \\frac{Ma}{2}\\cdots(4)\\\\\\\\\n\n&\\small\\text{By (3) \\& (4)},\\\\\\\\\n\n\\small T_2&=\\small \\frac{3Ma}{2}\\cdots(5)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small (Mg-Ma)-(\\frac{3Ma}{2})&=\\small \\frac{Ma}{2}\\\\\n\\small g-a -\\frac{3a}{2}&=\\small \\frac{a}{2}\\\\\n\\small a&=\\small \\frac{g}{3} \n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \n\\end{aligned}"
Comments
Leave a comment