Question #212170

Consider the case of a one-dimensional harmonic oscillator on the x-axis. Determine the Hamiltonian of the system using the Lagrangian transformation, then determine the equation of motion!


1
Expert's answer
2021-06-30T11:47:09-0400

simple harmonic oscillator


Hamiltonian simple harmonic oscillator -


Hamiltonian of a system is defined as -


H=ΣpiqiH=\Sigma{p_i}{q_i}L-L


in the above equation pi=Generalised momentum{p_i}=Generalised \ momentum

qi=q_{i}= Generalised velocityGeneralised\ velocity

L=LagrangianL=Lagrangian


now we know that L=TV......1)L=T-V......1) , and motion is along x-axis .


T=MX22T=\dfrac{MX'^{2}}{2}


V=KX22V=\dfrac{KX^{2}}{2}


Now putting T\ and VV in equation 1 , we get =


L=L= MX22\dfrac{MX'^{2}}{2} KX22-\dfrac{KX^{2}}{2}



Now , similarly Hamiltonian equation will become -


H=H= ΣpiqiL\Sigma{p_i}{q_i}-L


H=ΣpiqiH=\Sigma{p_i}{q_i} Mx22+Kx22-\dfrac{Mx'^{2}}{2}+\dfrac{Kx^{2}}{2}


Pi=P_{i}= actually momentum of spring along X-axis .


Qi=Q_{i}= actually generalised velocity along X-axis.


From lagrangian lx=px\dfrac {\partial l}{\partial x}=p_{x} , lqc=Pi\dfrac {\partial l}{\partial q_{c}'}=P_{i}


lx=\dfrac {\partial l}{\partial x'}= (Mx2+Kx2)2\dfrac{\partial( Mx'^{2}+Kx^{2})}{2}



lx=mx\dfrac {\partial l}{\partial x'}=mx'


    \implies px=mx    p_{x}=mx'\implies x=Pxmx'=\dfrac{Px}{m}


now substituting the value of xx' in Hamiltonian equation , we get -


H=PxPxm(mx)22m+Kx22H=P_x\dfrac{P_x}{m}-\dfrac{{(mx')}^{2}}{2m}+\dfrac{Kx^{2}}{2}



H=Px2mPx22m+Kx22H=\dfrac{P_x^{2}}{m}-\dfrac{P_x^{2}}{2m}+\dfrac{Kx^{2}}{2}



H=H= Px22m\dfrac{P_x^{2}}{2m} +Kx22+\dfrac{Kx^{2}}{2}


The above equation is Hamiltonian equation for simple harmonic oscillator .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS