(1) The wave function of this wave?
y=Asin(kx±ωt+ϕ)
Given x=0 and t= 0, y = A
y=Asin(k∗0−ω∗0+ϕ)
1=sin(ϕ)
ϕ=2π
Therefore the equation becomes y=Asin(kx−ωt+2π)
y=Asin(kx−ωt+2π)
y=Asin(λ2πx−T2πt+2π)
y=Asin(5πx−4πt+2π)
(2) The displacement of the element at x₁=λ/4 when T₁=T/4?
y=Asin(λ2π∗4λ−T2π∗4T+2π)
y=Asin(2π−2π+2π)
y=Asin(2π)
y=A=0.1m
(3) The velocity of the element at x₁=λ/4 when T₂=T/2?
dxd(Asin(2π))
dxd(A)=0
v=0m/s
Comments