Equation of SHMs are
x 1 = 4 × 1 0 − 2 c o s 2 π ( t + 1 / 8 ) ; x 2 = 3 × 1 0 − 2 c o s 2 π ( t + 1 / 4 ) x₁= 4×10^{-2} cos2π(t+1/8); x₂=3×10^{-2} cos2π(t+1/4) x 1 = 4 × 1 0 − 2 cos 2 π ( t + 1/8 ) ; x 2 = 3 × 1 0 − 2 cos 2 π ( t + 1/4 )
Equation of resultant oscillation,
y = x 1 + x 2 = 4 × 1 0 − 2 c o s 2 π ( t + 1 / 8 ) + 3 × 1 0 − 2 c o s 2 π ( t + 1 / 4 ) y = x₁+x_2= 4×10^{-2} cos2π(t+1/8)+3×10^{-2} cos2π(t+1/4) y = x 1 + x 2 = 4 × 1 0 − 2 cos 2 π ( t + 1/8 ) + 3 × 1 0 − 2 cos 2 π ( t + 1/4 )
= [ 4 × 1 0 − 2 c o s ( 2 π t + π 4 ) ] + [ 3 × 1 0 − 2 c o s ( 2 π t + π 2 ) ] = [4\times 10^{-2}cos(2\pi t + \frac{\pi}{4})]+[3 \times 10^{-2}cos(2\pi t + \frac{\pi}{2})] = [ 4 × 1 0 − 2 cos ( 2 π t + 4 π )] + [ 3 × 1 0 − 2 cos ( 2 π t + 2 π )]
Let A = 4 × 1 0 − 2 ; B = 3 × 1 0 − 2 A = 4\times10^{-2} ; B = 3\times10^{-2} A = 4 × 1 0 − 2 ; B = 3 × 1 0 − 2 to make equation simple.
y = [ A c o s ( 2 π t + π 4 ) ] + [ B c o s ( 2 π t + π 2 ) ] y = [Acos(2\pi t + \frac{\pi}{4})]+[Bcos(2\pi t + \frac{\pi}{2})] y = [ A cos ( 2 π t + 4 π )] + [ B cos ( 2 π t + 2 π )]
Expanding both cos functions,
y = A [ c o s ( 2 π t ) c o s ( π 4 ) − s i n ( 2 π t ) s i n ( π 4 ) ] + B [ c o s ( 2 π t ) c o s ( π 2 ) − s i n ( 2 π t ) s i n ( π 2 ) ] y = A[cos(2\pi t )cos( \frac{\pi}{4}) - sin(2\pi t )sin( \frac{\pi}{4})]+B[cos(2\pi t)cos(\frac{\pi}{2})-sin(2\pi t)sin(\frac{\pi}{2})] y = A [ cos ( 2 π t ) cos ( 4 π ) − s in ( 2 π t ) s in ( 4 π )] + B [ cos ( 2 π t ) cos ( 2 π ) − s in ( 2 π t ) s in ( 2 π )]
since, c o s ( π / 4 ) = s i n ( π / 4 ) = 1 2 ; s i n ( π / 2 ) = 1 ; c o s ( π / 2 ) = 0 cos(\pi / 4) = sin(\pi / 4) = \frac{1}{\sqrt{2}}; sin(\pi /2) = 1;cos(\pi /2) = 0 cos ( π /4 ) = s in ( π /4 ) = 2 1 ; s in ( π /2 ) = 1 ; cos ( π /2 ) = 0
y = A 2 [ c o s ( 2 π t ) − s i n ( 2 π t ) ] − B s i n ( 2 π t ) y = \frac{A}{\sqrt{2}} [cos(2\pi t) - sin(2\pi t)] - Bsin(2\pi t) y = 2 A [ cos ( 2 π t ) − s in ( 2 π t )] − B s in ( 2 π t )
y = A 2 c o s ( 2 π t ) − ( A 2 + B ) s i n ( 2 π t ) y = \frac{A}{\sqrt{2}}cos(2\pi t) - ( \frac{A}{\sqrt{2}} + B) sin(2\pi t) y = 2 A cos ( 2 π t ) − ( 2 A + B ) s in ( 2 π t )
Let A 2 = P s i n ϕ ; ( A 2 + B ) = P c o s ϕ \frac{A}{\sqrt{2}} = Psin\phi; (\frac{A}{\sqrt{2}} + B) = Pcos\phi 2 A = P s in ϕ ; ( 2 A + B ) = P cos ϕ
Then y = P s i n ( ϕ ) c o s ( 2 π t ) − P c o s ( ϕ ) s i n ( 2 π t ) = P s i n ( ϕ − 2 π t ) y = Psin(\phi) cos(2\pi t) -Pcos(\phi )sin(2\pi t) = Psin(\phi - 2\pi t) y = P s in ( ϕ ) cos ( 2 π t ) − P cos ( ϕ ) s in ( 2 π t ) = P s in ( ϕ − 2 π t )
y = − P s i n ( 2 π t − ϕ ) y = -Psin(2\pi t - \phi) y = − P s in ( 2 π t − ϕ )
where, ϕ = t a n − 1 A 2 A 2 + B = t a n − 1 A A + 2 B = t a n − 1 4 × 1 0 − 2 4 × 1 0 − 2 + 3 × 1 0 − 2 2 = 25.8 9 ∘ \phi = tan^{-1}\frac{\frac{A}{\sqrt{2}}}{\frac{A}{\sqrt{2}} + B} = tan^{-1}\frac{A}{A + \sqrt{2}B} = tan^{-1}\frac{4\times 10^{-2}}{4\times 10^{-2} + 3\times 10^{-2}\sqrt{2}} = 25.89^\circ ϕ = t a n − 1 2 A + B 2 A = t a n − 1 A + 2 B A = t a n − 1 4 × 1 0 − 2 + 3 × 1 0 − 2 2 4 × 1 0 − 2 = 25.8 9 ∘
and
P = ( A 2 ) 2 + ( A 2 + B ) 2 = 6.47 × 1 0 − 2 P = \sqrt{(\frac{A}{\sqrt{2}})^2 + (\frac{A}{\sqrt{2}} + B)^2} = 6.47 \times 10^{-2} P = ( 2 A ) 2 + ( 2 A + B ) 2 = 6.47 × 1 0 − 2
Hence equation will be,
y = − 6.47 × 1 0 − 2 s i n ( 2 π t − ϕ ) y = -6.47 \times 10^{-2}sin(2\pi t - \phi) y = − 6.47 × 1 0 − 2 s in ( 2 π t − ϕ )
Comments
I am so grateful