Question #206284
  • Two equations of simple harmonic motion are given as follows : x₁= 4×10⁻² cos2π(t+1/8); x₂=3×10⁻² cos2π(t+1/4) . Find the equation of the resultant oscillation?
1
Expert's answer
2021-06-15T17:00:57-0400

Equation of SHMs are

x1=4×102cos2π(t+1/8);x2=3×102cos2π(t+1/4)x₁= 4×10^{-2} cos2π(t+1/8); x₂=3×10^{-2} cos2π(t+1/4)


Equation of resultant oscillation,

y=x1+x2=4×102cos2π(t+1/8)+3×102cos2π(t+1/4)y = x₁+x_2= 4×10^{-2} cos2π(t+1/8)+3×10^{-2} cos2π(t+1/4)

=[4×102cos(2πt+π4)]+[3×102cos(2πt+π2)]= [4\times 10^{-2}cos(2\pi t + \frac{\pi}{4})]+[3 \times 10^{-2}cos(2\pi t + \frac{\pi}{2})]


Let A=4×102;B=3×102A = 4\times10^{-2} ; B = 3\times10^{-2} to make equation simple.


y=[Acos(2πt+π4)]+[Bcos(2πt+π2)]y = [Acos(2\pi t + \frac{\pi}{4})]+[Bcos(2\pi t + \frac{\pi}{2})]


Expanding both cos functions,

y=A[cos(2πt)cos(π4)sin(2πt)sin(π4)]+B[cos(2πt)cos(π2)sin(2πt)sin(π2)]y = A[cos(2\pi t )cos( \frac{\pi}{4}) - sin(2\pi t )sin( \frac{\pi}{4})]+B[cos(2\pi t)cos(\frac{\pi}{2})-sin(2\pi t)sin(\frac{\pi}{2})]


since, cos(π/4)=sin(π/4)=12;sin(π/2)=1;cos(π/2)=0cos(\pi / 4) = sin(\pi / 4) = \frac{1}{\sqrt{2}}; sin(\pi /2) = 1;cos(\pi /2) = 0


y=A2[cos(2πt)sin(2πt)]Bsin(2πt)y = \frac{A}{\sqrt{2}} [cos(2\pi t) - sin(2\pi t)] - Bsin(2\pi t)


y=A2cos(2πt)(A2+B)sin(2πt)y = \frac{A}{\sqrt{2}}cos(2\pi t) - ( \frac{A}{\sqrt{2}} + B) sin(2\pi t)


Let A2=Psinϕ;(A2+B)=Pcosϕ\frac{A}{\sqrt{2}} = Psin\phi; (\frac{A}{\sqrt{2}} + B) = Pcos\phi


Then y=Psin(ϕ)cos(2πt)Pcos(ϕ)sin(2πt)=Psin(ϕ2πt)y = Psin(\phi) cos(2\pi t) -Pcos(\phi )sin(2\pi t) = Psin(\phi - 2\pi t)

y=Psin(2πtϕ)y = -Psin(2\pi t - \phi)


where, ϕ=tan1A2A2+B=tan1AA+2B=tan14×1024×102+3×1022=25.89\phi = tan^{-1}\frac{\frac{A}{\sqrt{2}}}{\frac{A}{\sqrt{2}} + B} = tan^{-1}\frac{A}{A + \sqrt{2}B} = tan^{-1}\frac{4\times 10^{-2}}{4\times 10^{-2} + 3\times 10^{-2}\sqrt{2}} = 25.89^\circ

and

P=(A2)2+(A2+B)2=6.47×102P = \sqrt{(\frac{A}{\sqrt{2}})^2 + (\frac{A}{\sqrt{2}} + B)^2} = 6.47 \times 10^{-2}


Hence equation will be,

y=6.47×102sin(2πtϕ)y = -6.47 \times 10^{-2}sin(2\pi t - \phi)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Kabir
16.06.21, 00:04

I am so grateful

LATEST TUTORIALS
APPROVED BY CLIENTS