Answer to Question #202806 in Mechanics | Relativity for Ayush

Question #202806

Derive the reduction formula

integeration(x2+a2)n/2dx = x(x2+a2)n/2÷n+1+ na2/n+1×integeration (x2 +a2)n/2-1dx

Use the formula to integrate integration(x2+a2)5/2

1
Expert's answer
2021-06-03T18:26:38-0400

(x2+a2)52dx=x(x2+a2)526+5a26(x2+a2)32dx=x(x2+a2)526+5a26(x(x2+a2)324+3a24(x2+a2)12dx)=\int (x^2+a^2)^{\frac52}dx=\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2}{6}\int (x^2+a^2)^{\frac32}dx=\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2}{6}(\frac{x(x^2+a^2)^{\frac32}}{4}+\frac{3a^2}{4}\int (x^2+a^2)^{\frac12}dx)= x(x2+a2)526+5a2x(x2+a2)3224+5a416(x(x2+a2)12+a2ln(x+(x2+a2)12))+C.\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2x(x^2+a^2)^{\frac32}}{24}+\frac{5a^4}{16}(x(x^2+a^2)^{\frac12}+a^2\ln(x+(x^2+a^2)^{\frac12}))+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment