Derive the reduction formula
Use the formula to integrate integration(x2+a2)5/2
∫(x2+a2)52dx=x(x2+a2)526+5a26∫(x2+a2)32dx=x(x2+a2)526+5a26(x(x2+a2)324+3a24∫(x2+a2)12dx)=\int (x^2+a^2)^{\frac52}dx=\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2}{6}\int (x^2+a^2)^{\frac32}dx=\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2}{6}(\frac{x(x^2+a^2)^{\frac32}}{4}+\frac{3a^2}{4}\int (x^2+a^2)^{\frac12}dx)=∫(x2+a2)25dx=6x(x2+a2)25+65a2∫(x2+a2)23dx=6x(x2+a2)25+65a2(4x(x2+a2)23+43a2∫(x2+a2)21dx)= x(x2+a2)526+5a2x(x2+a2)3224+5a416(x(x2+a2)12+a2ln(x+(x2+a2)12))+C.\frac{x(x^2+a^2)^{\frac52}}{6}+\frac{5a^2x(x^2+a^2)^{\frac32}}{24}+\frac{5a^4}{16}(x(x^2+a^2)^{\frac12}+a^2\ln(x+(x^2+a^2)^{\frac12}))+C.6x(x2+a2)25+245a2x(x2+a2)23+165a4(x(x2+a2)21+a2ln(x+(x2+a2)21))+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment