Mass of identical sphere(M)=1 kg
Mass of another sphere (m)=0.3 kg
Distance between sphere(d)=0.50 m
From the above figure,
Let us calculate the angle C by the law of cosines:
c o s C = A C 2 + B C 2 − A B 2 2 × A C × B C = 0. 5 2 + 0. 5 2 − 0. 8 2 2 × 0.5 × 0.5 = − 0.28 cosC=\frac{AC^2+BC^2-AB^2}{2 \times AC \times BC} \\
= \frac{0.5^2+0.5^2-0.8^2}{2 \times 0.5\times 0.5} = -0.28 cos C = 2 × A C × BC A C 2 + B C 2 − A B 2 = 2 × 0.5 × 0.5 0. 5 2 + 0. 5 2 − 0. 8 2 = − 0.28
Force due to A on C is given as:
F A C = G m A m C A C 2 = G M m 0. 5 2 = F F_{AC}=\frac{Gm_Am_C}{AC^2}=\frac{GMm}{0.5^2}=F F A C = A C 2 G m A m C = 0. 5 2 GM m = F
Force due to B on C is given as:
F B C = G m A m C B C 2 = G M m 0. 5 2 = F F_{BC}=\frac{Gm_Am_C}{BC^2}= \frac{GMm}{0.5^2}=F F BC = B C 2 G m A m C = 0. 5 2 GM m = F
The resultant or net force on C is given as:
F n e t = F A C 2 + F B C 2 + 2 F A C F B C c o s C F A C = F B C = F F n e t = F 2 + 2 c o s C = G M m d 2 2 + 2 c o s C = G M m 0. 5 2 2 + 2 ( − 0.28 ) = 4.8 G m m F_{net}= \sqrt{F_{AC}^2+F_{BC}^2+2F_{AC}F_{BC}cosC} \\
F_{AC}=F_{BC}=F \\
F_{net}=F\sqrt{2+2cosC} \\
=\frac{GMm}{d^2}\sqrt{2+2cosC} \\
= \frac{GMm}{0.5^2}\sqrt{2+2(-0.28)} = 4.8 \;Gmm F n e t = F A C 2 + F BC 2 + 2 F A C F BC cos C F A C = F BC = F F n e t = F 2 + 2 cos C = d 2 GM m 2 + 2 cos C = 0. 5 2 GM m 2 + 2 ( − 0.28 ) = 4.8 G mm
Acceleration
a = F n e t m = 4.8 G m m m = 4.8 G M a= \frac{F_{net}}{m} \\
= \frac{4.8 \;Gmm}{m}= 4.8\;GM a = m F n e t = m 4.8 G mm = 4.8 GM
G = gravitational constant
G = 6.67 × 1 0 − 11 N m 2 / k g 2 a = 4.8 × 6.67 × 1 0 − 11 × 1 = 32.03 × 1 0 − 11 m / s 2 G= 6.67 \times 10^{-11} \;N m^2/kg^2 \\
a = 4.8 \times 6.67 \times 10^{-11} \times 1 = 32.03 \times 10^{-11} \;m/s^2 G = 6.67 × 1 0 − 11 N m 2 / k g 2 a = 4.8 × 6.67 × 1 0 − 11 × 1 = 32.03 × 1 0 − 11 m / s 2
Answer: 32.03 × 1 0 − 11 m / s 2 32.03 \times 10^{-11} \;m/s^2 32.03 × 1 0 − 11 m / s 2
Comments