A disc with a mass of 1.21 kg rotates around an axis z with an initial angular velocity of 3.25 rad/s. On top of the disc (which has an inertia radius of 2.55m) is a rectangular disc with mass 1.21kg, base 3.163m and height 3.206m and rotates at the same angular velocity as the lower disc 3.25 rad/s. The axis of rotation passes through the center of mass of both discs. Calculate the total rotational energy of the discs.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small E_r&=\\small \\frac{1}{2}I_{disc}\\omega^2+\\frac{1}{2}I_{plate}\\omega^2\\\\\n&=\\small \\frac{\\omega^2}{2}(I_{d}+I_{p})\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small K&=\\small \\frac{r_d}{\\sqrt2}\\\\\n\\small r_d&=\\small \\sqrt2 \\times2.55\\,m\\\\\n&=\\small 3.61\\,m\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small I_d&=\\small \\frac{1}{2}mr^2=0.5\\times1.21\\,kg\\times3.61^2m^2\\\\\n&=\\small 7.88\\,kgm^2\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small I_{center}&=\\small \\frac{1}{3}m(a^2)\\\\\n&=\\small \\frac{1}{12}\\times1.21\\,kg\\times(3.163^2m^2)\\\\\n&=\\small 1.01\\,kgm^2\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small I_{z}&=\\small I+mx^2\\\\\n&=\\small 1.01+1.21\\times(\\frac{3.163m}{2})^2\\\\\n\\small I_{plate}&=\\small I_z=4.04\\,kgm^2\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small E_k&=\\small \\frac{(3.25\\,rads^{-1})^2}{2}\\times(7.88+4.04)\\\\\n&=\\small \\bold{62.95\\,J}\n\\end{aligned}"
Comments
Leave a comment