Question #201423

1.     A driver of an ambulance going 70 km/h suddenly sees another car 35.0 m ahead. It takes the driver 0.62 s before he applies the brakes. Once he does begin to brake, he reduces speed at a rate of 13.0 m/s².

 

1.1  Determine if the driver will hit the car or not.                                               (6)

 

What would be the maximum speed at which the ambulance could travel and NOT hit the car 35.0m ahead?             


1
Expert's answer
2021-06-01T10:51:39-0400

a=vv0t=13a=\frac{v-v_0}{t}=13 m/s2

Time of breaking:

t=vv0a=70/(3.613)=1.5 st=\frac{v-v_0}{a}=70/(3.6\cdot13)=1.5\ s

Breaking distance:

d=700.62/3.6+v0tat2/2d=70\cdot0.62/3.6+v_0t-at^2/2

d=700.62/3.6+701.5/3.6131.52/2=26.6 md=70\cdot0.62/3.6+70\cdot1.5/3.6-13\cdot1.5^2/2=26.6\ m

Since distance d < 35 m, the driver will not hit the car.


For maximum speed:

d=35=vmax0.62+vmaxtat2/2d=35=v_{max}\cdot0.62+v_{max}t-at^2/2

d=35=vmax0.62+vmax2/avmax2/(2a)=vmax0.62+vmax2/(2a)d=35=v_{max}\cdot0.62+v_{max}^2/a-v^2_{max}/(2a)=v_{max}\cdot0.62+v^2_{max}/(2a)

vmax2+16.12vmax910=0v^2_{max}+16.12v_{max}-910=0


vmax=16.12+16.122+49102=23.16 m/s=83.4 km/hv_{max}=\frac{-16.12+\sqrt{16.12^2+4\cdot910}}{2}=23.16\ m/s=83.4\ km/h


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS