Question #201051

Given the vectors A = 8i + 4j -2k N B = 2j + 6k m C = 3i -2j + 4k m Calculate the following: a. 𝐀 ∙ 𝐁 b. The orthogonal component of B in the direction of C c. The angle between A and C d. A x B e. a unit vector λ that is perpendicular to both A and B f. 𝐀 x 𝐁 ∙ 𝐂


1
Expert's answer
2021-06-01T10:51:04-0400

A = 8i + 4j -2k N

B = 2j + 6k m

C = 3i -2j + 4k m

(a) A.B=(8i+4j2k).(2j+6k)A.B= (8i + 4j -2k).(2j + 6k)  

=(8×0)+(4×2)+(2×6)=(8\times0)+(4\times2)+(-2\times6)

=4=-4


(b) Orthogonal component of B to C is given by,

=C×(B×C)C2=\dfrac{\vec C\times(\vec B\times\vec C)}{|\vec C|^2}

=(3i2j+4k)×((2j+6k)×(3i2j+4k))3i2j+4k2=\dfrac{(3i -2j + 4k)\times((2j + 6k)\times(3i -2j + 4k))}{|3i -2j + 4k|^2}

=(3i2j+4k)×(20i+18j6k)29=\dfrac{(3i -2j + 4k)\times(20i+18j-6k)}{29}

=60i+98j+94k29=\dfrac{-60i+98j+94k}{29}


(c) Angle between A and C is given by,

θ=cos1A.CAC\theta=\cos^{-1}\dfrac{\vec A.\vec C}{|\vec A||\vec C|}

θ=cos1(8i+4j2k).(3i2j+4k)8i+4j2k3i2j+4k\theta=\cos^{-1}\dfrac{(8i + 4j -2k).(3i -2j + 4k)}{|8i + 4j -2k||3i -2j + 4k|}

=cos1884×29=\cos^{-1}\dfrac{8}{\sqrt{84\times29}}

θ=80.67°\theta=80.67\degree


(d) A×B=(8i+4j2k)×(2j+6k)\vec A\times \vec B=(8i + 4j -2k)\times( 2j + 6k)

=28i48j+16k=28i-48j+16k


(e) Unit vector perpendicular to both A and B is given by,

λ=A×BA×B\lambda=\dfrac{\vec A\times\vec B}{|\vec A\times\vec B|}

λ=28i48j+16k28i48j+16k\lambda=\dfrac{28i-48j+16k}{|28i-48j+16k|}

λ=28i48j+16k3344\lambda=\dfrac{28i-48j+16k}{3344}


(f) (A×B).C=(28i48j+16k).(3i2j+4k)(\vec A\times\vec B).\vec C=(28i-48j+16k).(3i -2j + 4k)

=244=244


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS