Given the vectors A = 8i + 4j -2k N B = 2j + 6k m C = 3i -2j + 4k m Calculate the following: a. π β π b. The orthogonal component of B in the direction of C c. The angle between A and C d. A x B e. a unit vector Ξ» that is perpendicular to both A and B f. π x π β π
A = 8i + 4j -2k N
B = 2j + 6k m
C = 3i -2j + 4k m
(a) "A.B= (8i + 4j -2k).(2j + 6k)" Β
"=(8\\times0)+(4\\times2)+(-2\\times6)"
"=-4"
(b) Orthogonal component of B to C is given by,
"=\\dfrac{\\vec C\\times(\\vec B\\times\\vec C)}{|\\vec C|^2}"
"=\\dfrac{(3i -2j + 4k)\\times((2j + 6k)\\times(3i -2j + 4k))}{|3i -2j + 4k|^2}"
"=\\dfrac{(3i -2j + 4k)\\times(20i+18j-6k)}{29}"
"=\\dfrac{-60i+98j+94k}{29}"
(c) Angle between A and C is given by,
"\\theta=\\cos^{-1}\\dfrac{\\vec A.\\vec C}{|\\vec A||\\vec C|}"
"\\theta=\\cos^{-1}\\dfrac{(8i + 4j -2k).(3i -2j + 4k)}{|8i + 4j -2k||3i -2j + 4k|}"
"=\\cos^{-1}\\dfrac{8}{\\sqrt{84\\times29}}"
"\\theta=80.67\\degree"
(d) "\\vec A\\times \\vec B=(8i + 4j -2k)\\times( 2j + 6k)"
"=28i-48j+16k"
(e) Unit vector perpendicular to both A and B is given by,
"\\lambda=\\dfrac{\\vec A\\times\\vec B}{|\\vec A\\times\\vec B|}"
"\\lambda=\\dfrac{28i-48j+16k}{|28i-48j+16k|}"
"\\lambda=\\dfrac{28i-48j+16k}{3344}"
(f) "(\\vec A\\times\\vec B).\\vec C=(28i-48j+16k).(3i -2j + 4k)"
"=244"
Comments
Leave a comment