(250 ohms, 150 ohms, and 50 ohms are their in parallel)
Given,
R1=250 ΩR2=150 ΩR3=50 ΩR_1=250\ \Omega\\R_2=150\ \Omega\\R_3=50\ \OmegaR1=250 ΩR2=150 ΩR3=50 Ω
and all the three resistors are in parallel
So, Equivalent Resistance
1Req=1R1+1R2+1R3 1Req=1250+1150+150 1Req=3+5+15750 Req=75023=32.61\dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\\\ \\\dfrac{1}{R_{eq}}=\dfrac{1}{250}+\dfrac{1}{150}+\dfrac{1}{50}\\\ \\\dfrac{1}{R_{eq}}=\dfrac{3+5+15}{750}\\\ \\R_{eq}= \dfrac{750}{23}=32.61Req1=R11+R21+R31 Req1=2501+1501+501 Req1=7503+5+15 Req=23750=32.61
Hence, equivalent resistance Req=32.61 Ω\boxed{R_{eq}=32.61\ \Omega}Req=32.61 Ω
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments