for low speed ( laminar) flow through a circular pipe, the velocity distribution takes the form v=(beta/
v=BΔpμ(ro2−r2)v=B\dfrac{\Delta p}{\mu}(r_o^2-r^2)v=BμΔp(ro2−r2)
Dimension of v=L/T=LT−1v=L/T=LT^{-1}v=L/T=LT−1
Dimension of μ=τdudy\mu=\dfrac{\tau}{\dfrac{du}{dy}}μ=dyduτ
μ=ML−1T−1\mu=ML^{-1}T^{-1}μ=ML−1T−1
Dimension of Δp=ML−1T−2\Delta p=ML^{-1}T^{-2}Δp=ML−1T−2
Dimension of r=Lr=Lr=L
Substituting all values in first equation
LT−1=B×ML−1T−2ML−1T−1×L2LT^{-1}=B\times\dfrac{ML^{-1}T^{-2}}{ML^{-1}T^{-1}}\times L^2LT−1=B×ML−1T−1ML−1T−2×L2
B=L−1B=L^{-1}B=L−1
Therefore, dimension of B = L-1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments