Question #198168

for low speed ( laminar) flow through a circular pipe, the velocity distribution takes the form v=(beta/


1
Expert's answer
2021-05-25T10:11:48-0400

v=BΔpμ(ro2r2)v=B\dfrac{\Delta p}{\mu}(r_o^2-r^2)



Dimension of v=L/T=LT1v=L/T=LT^{-1}

Dimension of μ=τdudy\mu=\dfrac{\tau}{\dfrac{du}{dy}}

μ=ML1T1\mu=ML^{-1}T^{-1}

Dimension of Δp=ML1T2\Delta p=ML^{-1}T^{-2}

Dimension of r=Lr=L

Substituting all values in first equation

LT1=B×ML1T2ML1T1×L2LT^{-1}=B\times\dfrac{ML^{-1}T^{-2}}{ML^{-1}T^{-1}}\times L^2

B=L1B=L^{-1}

Therefore, dimension of B = L-1

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS